求所谓的 optimal path:
对某个顶点,只能沿着它所有出边中weight最小的那些路走;
从起点到终点的总weight最小;
如果有weight相同的,取总length最短的.
可能有负环,自环,平行边.
先将不符合要求的边删掉.
接着,关键在于如何判断有效负环,即该负环处在起点到终点的路上.
实际上,只用保留原图中从起点能到达,并且能到达终点的顶点.
如果用标准bellman-ford,需要2次DFS:从起点开始沿边的方向DFS,标记能到达的点;从终点开始沿边的逆向DFS,标记点.
2次都被标记到的点,才是实际有效点.将剩余点删掉.
如果用SPFA,只用执行逆向DFS,因为SPFA本身的扩展是从起点开始沿正向搜索扩展的.
可以建个新图,回避删边删点的麻烦.
无法到达,输出VOID:之前从终点开始的DFS无法到达起点
weight无下界,输出UNBOUND:新图中存在关于weight的负环
要注意松弛操作weight的优先级最高...我居然犯这么低级的错误.
最后若有界解存在,输出wi[B]和di[B]
ps. 如果这题改成: 求length最短的路径中,weight最小的路径,就不一样了,得判断负环是不是在起点到终点的必经之路上,如果不是,还要不断走负环,使得在lenght最短的前提下,weight取尽量大.
1
#include <iostream>
2
using namespace std;
3
4
const int MAXQ = 65536;
5
const int INF = -0x7fffffff;
6
7
struct EDGE
{
8
int v,e,w,l;
9
}edg[5100*8];
10
int se, gt[1100],gg[1100]; //原图,新图
11
int cn[1100], re[1100], di[1100],wi[1100]; //顶点入列次数, 顶点rewarding边权, dist, weight
12
bool ok[1100],inq[1100]; //能否到达终点, 是否在队列中
13
int que[MAXQ],pq,sq;
14
int ansW,ansL;
15
int N,M,A,B;
16
17
inline void addedge(int u, int v, int w, int l, int g[])
{
18
edg[se].v = v;
19
edg[se].w = w;
20
edg[se].l = l;
21
edg[se].e = g[u];
22
g[u] = se++;
23
}
24
25
inline void skp(char c)
{
26
while(getchar()!=c);
27
}
28
29
bool input()
{
30
int i,j,k,u,v,wf,wb,l;
31
se = 2;
32
memset(gt, 0, sizeof(gt));
33
memset(gg, 0, sizeof(gg));
34
memset(re, 0x7f, sizeof(re));
35
if(scanf("%d%d",&N,&M)==EOF) return false;
36
scanf("%d%d",&A,&B);
37
for(i=0; i<M; i++)
{
38
skp('('); scanf("%d",&u);
39
skp(','); scanf("%d",&v);
40
skp(','); scanf("%d",&wf);
41
skp('['); scanf("%d",&l);
42
skp(']'); scanf("%d",&wb);
43
skp(')');
44
addedge(u,v,wf,l,gt);
45
addedge(v,u,wb,l,gt);
46
re[u] = min(re[u], wf);
47
re[v] = min(re[v], wb);
48
}
49
return true;
50
}
51
52
void dfs(int r)
{ //从B开始沿反向边遍历
53
int i,j,k;
54
ok[r]=true;
55
for(j=gt[r]; j>0; j=edg[j].e)
{
56
if(ok[edg[j].v]==true) continue;
57
if(edg[j^1].w == re[edg[j].v])
58
dfs(edg[j].v);
59
}
60
}
61
62
63
bool spfa()
{
64
int i,j,k,u,v,w;
65
bool flag;
66
memset(cn, 0, sizeof(cn)); //入列次数
67
for(i=0; i<N; i++)
{
68
di[i] = wi[i] = INF;
69
}
70
memset(inq, false, sizeof(inq)); //是否在队列中
71
pq = sq = 0;
72
que[sq++] = A;
73
di[A] = 0; wi[A] = 0;
74
while(pq!=sq)
{
75
u = que[pq]; inq[u]=false;
76
if(++pq == MAXQ) pq=0;
77
for(j=gg[u]; j>0; j=edg[j].e)
{
78
v = edg[j].v; flag = false; //是否有松弛操作
79
if(wi[v] == INF || wi[v]>wi[u]+edg[j].w)
{ //对weight,优先级最高
80
flag=true;
81
wi[v] = wi[u]+edg[j].w;
82
di[v] = di[u]+edg[j].l;
83
if(inq[v]==false && ++cn[v]>N*2) //判断负环
84
return false;
85
}
86
else if(wi[v]==wi[u]+edg[j].w)
{
87
if(di[v] == INF || di[v]>di[u]+edg[j].l)
{ //对length
88
flag=true;
89
di[v] = di[u]+edg[j].l;
90
}
91
}
92
if(inq[v]==false && flag==true)
{
93
inq[v]=true;
94
que[sq] = v;
95
if(++sq == MAXQ) sq=0;
96
}
97
}
98
}
99
ansW = wi[B];
100
ansL = di[B];
101
return true;
102
}
103
104
105
void solve()
{
106
int i,j,k;
107
108
memset(ok,false,sizeof(ok));
109
dfs(B);
110
if(ok[A]==false)
{
111
puts("VOID"); return ;
112
}
113
for(i=0; i<N; i++)
{ //建新图
114
if(ok[i]==false) continue;
115
for(j=gt[i]; j>0; j=edg[j].e)
{
116
if(edg[j].w == re[i] && ok[edg[j].v]==true)
{
117
addedge(i, edg[j].v, edg[j].w, edg[j].l, gg);
118
//printf("%d,%d(%d,%d) ",i,edg[j].v,edg[j].w,edg[j].l);
119
}
120
}
121
}
122
ansL = ansW = 0x7fffffff;
123
if(spfa()==false)
{
124
puts("UNBOUND"); return ;
125
}
126
printf("%d %d\n",ansW,ansL);
127
}
128
129
130
int main()
{
131
while(input())
{
132
solve();
133
}
134
return 0;
135
}
posted on 2009-05-06 11:17
wolf5x 阅读(258)
评论(0) 编辑 收藏 引用 所属分类:
acm_icpc 、
algorithm