姚明,81年,97年开始接触电脑,6年的编程学习经历, 曾有4年工作经验,最终转向基础理论学习和研究, 现华中理工科技大学在读,有志于图形学领域工作发展

EMAIL:alanvincentmail@gmail.com QQ:31547735

随笔分类(34)

文章分类(99)

相册

收藏夹(6)

编程技术网站

出国留学网站

数学资源网站

图形学网站

英语资源网站

自由职业者

搜索

  •  

最新评论

Symbol
Name Explanation Examples Unicode Value
Should be read as
Category




material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒ (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).

⊃ may mean the same as ⇒ (the symbol may also mean superset).
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2). 8658

8594

8835
implies; if .. then
propositional logic, Heyting algebra




material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y 8660

8596
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
172

732
not
propositional logic


&
logical conjunction The statement AB is true if A and B are both true; else it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number. 8743

38
and
propositional logic
logical disjunction The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number. 8744
or
propositional logic



exclusive or The statement AB is true when either A or B, but not both, are true. A B means the same. A) ⊕ A is always true, AA is always false. 8853

8891
xor
propositional logic, Boolean algebra



T

1
logical truth The statement ⊤ is unconditionally true. A ⇒ ⊤ is always true. 8868
top
propositional logic, Boolean algebra



F

0
logical falsity The statement ⊥ is unconditionally false. ⊥ ⇒ A is always true. 8869
bottom
propositional logic, Boolean algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ N: n2 ≥ n. 8704
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ N: n is even. 8707
there exists
first-order logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ N: n + 5 = 2n. 8707 33
there exists exactly one
first-order logic
:=



:⇔
definition x := y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
58 61

8801

58 8660
is defined as
everywhere
( )
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4. 40 41
everywhere
inference x y means y is derived from x. AB ¬B → ¬A 8866
infers or is derived from
propositional logic, first-order logic

See also

posted on 2007-10-28 03:51 姚明 阅读(1233) 评论(0)  编辑 收藏 引用 所属分类: 高等数学

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理