随笔 - 42  文章 - 3  trackbacks - 0
<2025年1月>
2930311234
567891011
12131415161718
19202122232425
2627282930311
2345678

常用链接

留言簿(2)

随笔档案

文章档案

网页收藏

搜索

  •  

最新评论

阅读排行榜

评论排行榜

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

问题实例:
1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

问题实例:

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

问题实例:
1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。

问题实例:
1).有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序 。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?

3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

1. 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出:A,B文件共同的URL。 
解法一:Hash成内存大小的小块文件,然后分块内存内查交集。
解法二:Bloom Filter(广泛应用于URL过滤、查重。参考http://en.wikipedia.org/wiki/Bloom_filterhttp://blog.csdn.net/jiaomeng/archive/2007/01/28/1496329.aspx

2. 有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。
解法一:根据数据稀疏程度算法会有不同,通用方法是用Hash把文件重排,让相同query一定会在同一个文件,同时进行计数,然后归并,用最小堆来统计频度最大的。
解法二:类似1,但是用的是与简单Bloom Filter稍有不同的CBF(Counting Bloom Filter)或者更进一步的SBF(Spectral Bloom Filter,参考http://blog.csdn.net/jiaomeng/archive/2007/03/19/1534238.aspx
解法三:MapReduce,几分钟可以在hadoop集群上搞定。参考http://en.wikipedia.org/wiki/MapReduce

3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。
解法一:跟2类似,只是不需要排序,各个文件分别统计前100,然后一起找前100。

posted on 2011-03-14 14:25 鹰击长空 阅读(1216) 评论(0)  编辑 收藏 引用

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理