快速计算整数的二进制表示法中1的个数

题目:给定一个无符号32位整数x,求x的二进制表示法中含1的个数?

第一种算法:

int OneCount(unsigned int x)
{
  
for(int count=0; x>0; count++)
    x
&=x-1;//把最后面的1变0
  return count;
}


 上面算法的时间复杂度就是1的个数。

第二种算法(查表法):

const int idx[256]={0,1,1,,8}//0~255中含1的个数
int OneCount(unsigned int x)
{
  
int count=0;
  
for(; x>0; x>>=8)
     count
+=idx[x&255];
  
return count;
}

上面算法最多只需要4次循环,用空间换取时间。

第二种算法的另一种形式:

const int idx[256]={0,1,1,..,8}
int OneCount(unsigned int x)
{
  unsigned 
char* p=(unsigned char*)&x;
  
return idx[*p]+idx[*(p+1)]+idx[*(p+2)]+idx[*(p+3)];
}


第三种算法:

int OneCount(unsigned int x)
{
  x
=(x&0x55555555UL)+((x>>1)&0x55555555UL); //1
  x
=(x&0x33333333UL)+((x>>2)&0x33333333UL);//2
  x
=(x&0x0f0f0f0fUL)+((x>>4)&0x0f0f0f0fUL); //3
  x
=(x&0x00ff00ffUL)+((x>>8)&0x00ff00ffUL); //4
  x
=(x&0x0000ffffUL)+((x>>16)&0x0000ffffUL);//5
  
return x;
}

解释:比如对于一个8位的整数122,用二进制表达0111 1010(abcd efgh),第1行代码的功能是x=0b0d 0f0h+0a0c 0e0g,两位一组,分别计算四组(a,b; c,d; e,f; g,h; )中1的个数,本例中x=0101 0000+0001 0101=0110 0101(更新的abcd efgh),在此基础上,再分组,就是第二行的功能x=00cd 00gh+00ab 00ef,四位一组(abcd; efgh),分别计算这两组包含1的个数,本例中x=0010 0001+0001 0001=0011 0010(更新abcd efgh),再8位一组,如第三行所示,x=0000 efgh+0000abcd=0000 0010+0000 0011=0000 0101=5,所以该整数122共包含5个1。

本算法思想:归并,对于一个32位的整数,先分成16组,统计每组(2位)中1的个数,再将统计的结果两两合并,得到8组,在此基础上又合并得到4组,2组,1组,进而得到最终结果。


 

posted on 2010-10-29 16:33 oliver 阅读(4595) 评论(0)  编辑 收藏 引用 所属分类: Algorithm


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


<2024年11月>
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

导航

统计

常用链接

留言簿

随笔档案

文章分类

文章档案

个人专栏

技术网站

搜索

最新评论

阅读排行榜

评论排行榜