////////////////////////////////////////////////////////////////////////////////
// CppSQLite3 - A C++ wrapper around the SQLite3 embedded database library.
//
// Copyright (c) 2004 Rob Groves. All Rights Reserved. rob.groves@btinternet.com
//
// Permission to use, copy, modify, and distribute this software and its
// documentation for any purpose, without fee, and without a written
// agreement, is hereby granted, provided that the above copyright notice,
// this paragraph and the following two paragraphs appear in all copies,
// modifications, and distributions.
//
// IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT,
// INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST
// PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION,
// EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF
// ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". THE AUTHOR HAS NO OBLIGATION
// TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
//
// V3.0 03/08/2004 -Initial Version for sqlite3
//
// V3.1 16/09/2004 -Implemented getXXXXField using sqlite3 functions
// -Added CppSQLiteDB3::tableExists()
////////////////////////////////////////////////////////////////////////////////
#include "CppSQLite3.h"
#include <cstdlib>
// Named constant for passing to CppSQLite3Exception when passing it a string
// that cannot be deleted.
static const bool DONT_DELETE_MSG=
false;
////////////////////////////////////////////////////////////////////////////////
// Prototypes for SQLite functions not included in SQLite DLL, but copied below
// from SQLite encode.c
////////////////////////////////////////////////////////////////////////////////
int sqlite3_encode_binary(
const unsigned
char *
in,
int n, unsigned
char *
out);
int sqlite3_decode_binary(
const unsigned
char *
in, unsigned
char *
out);
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
CppSQLite3Exception::CppSQLite3Exception(
const int nErrCode,
char* szErrMess,
bool bDeleteMsg
/*=true*/) :
mnErrCode(nErrCode)
{
mpszErrMess = sqlite3_mprintf("%s[%d]: %s",
errorCodeAsString(nErrCode),
nErrCode,
szErrMess ? szErrMess : "");
if (bDeleteMsg && szErrMess)
{
sqlite3_free(szErrMess);
}
}
CppSQLite3Exception::CppSQLite3Exception(
const CppSQLite3Exception& e) :
mnErrCode(e.mnErrCode)
{
mpszErrMess = 0;
if (e.mpszErrMess)
{
mpszErrMess = sqlite3_mprintf("%s", e.mpszErrMess);
}
}
const char* CppSQLite3Exception::errorCodeAsString(
int nErrCode)
{
switch (nErrCode)
{
case SQLITE_OK :
return "SQLITE_OK";
case SQLITE_ERROR :
return "SQLITE_ERROR";
case SQLITE_INTERNAL :
return "SQLITE_INTERNAL";
case SQLITE_PERM :
return "SQLITE_PERM";
case SQLITE_ABORT :
return "SQLITE_ABORT";
case SQLITE_BUSY :
return "SQLITE_BUSY";
case SQLITE_LOCKED :
return "SQLITE_LOCKED";
case SQLITE_NOMEM :
return "SQLITE_NOMEM";
case SQLITE_READONLY :
return "SQLITE_READONLY";
case SQLITE_INTERRUPT :
return "SQLITE_INTERRUPT";
case SQLITE_IOERR :
return "SQLITE_IOERR";
case SQLITE_CORRUPT :
return "SQLITE_CORRUPT";
case SQLITE_NOTFOUND :
return "SQLITE_NOTFOUND";
case SQLITE_FULL :
return "SQLITE_FULL";
case SQLITE_CANTOPEN :
return "SQLITE_CANTOPEN";
case SQLITE_PROTOCOL :
return "SQLITE_PROTOCOL";
case SQLITE_EMPTY :
return "SQLITE_EMPTY";
case SQLITE_SCHEMA :
return "SQLITE_SCHEMA";
case SQLITE_TOOBIG :
return "SQLITE_TOOBIG";
case SQLITE_CONSTRAINT :
return "SQLITE_CONSTRAINT";
case SQLITE_MISMATCH :
return "SQLITE_MISMATCH";
case SQLITE_MISUSE :
return "SQLITE_MISUSE";
case SQLITE_NOLFS :
return "SQLITE_NOLFS";
case SQLITE_AUTH :
return "SQLITE_AUTH";
case SQLITE_FORMAT :
return "SQLITE_FORMAT";
case SQLITE_RANGE :
return "SQLITE_RANGE";
case SQLITE_ROW :
return "SQLITE_ROW";
case SQLITE_DONE :
return "SQLITE_DONE";
case CPPSQLITE_ERROR :
return "CPPSQLITE_ERROR";
default:
return "UNKNOWN_ERROR";
}
}
CppSQLite3Exception::~CppSQLite3Exception()
{
if (mpszErrMess)
{
sqlite3_free(mpszErrMess);
mpszErrMess = 0;
}
}
////////////////////////////////////////////////////////////////////////////////
CppSQLite3Buffer::CppSQLite3Buffer()
{
mpBuf = 0;
}
CppSQLite3Buffer::~CppSQLite3Buffer()
{
clear();
}
void CppSQLite3Buffer::clear()
{
if (mpBuf)
{
sqlite3_free(mpBuf);
mpBuf = 0;
}
}
const char* CppSQLite3Buffer::format(
const char* szFormat,
)
{
clear();
va_list va;
va_start(va, szFormat);
mpBuf = sqlite3_vmprintf(szFormat, va);
va_end(va);
return mpBuf;
}
////////////////////////////////////////////////////////////////////////////////
CppSQLite3Binary::CppSQLite3Binary() :
mpBuf(0),
mnBinaryLen(0),
mnBufferLen(0),
mnEncodedLen(0),
mbEncoded(
false)
{
}
CppSQLite3Binary::~CppSQLite3Binary()
{
clear();
}
void CppSQLite3Binary::setBinary(
const unsigned
char* pBuf,
int nLen)
{
mpBuf = allocBuffer(nLen);
memcpy(mpBuf, pBuf, nLen);
}
void CppSQLite3Binary::setEncoded(
const unsigned
char* pBuf)
{
clear();
mnEncodedLen = strlen((
const char*)pBuf);
mnBufferLen = mnEncodedLen + 1;
// Allow for NULL terminator
mpBuf = (unsigned
char*)malloc(mnBufferLen);
if (!mpBuf)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Cannot allocate memory",
DONT_DELETE_MSG);
}
memcpy(mpBuf, pBuf, mnBufferLen);
mbEncoded =
true;
}
const unsigned
char* CppSQLite3Binary::getEncoded()
{
if (!mbEncoded)
{
unsigned
char* ptmp = (unsigned
char*)malloc(mnBinaryLen);
memcpy(ptmp, mpBuf, mnBinaryLen);
mnEncodedLen = sqlite3_encode_binary(ptmp, mnBinaryLen, mpBuf);
free(ptmp);
mbEncoded =
true;
}
return mpBuf;
}
const unsigned
char* CppSQLite3Binary::getBinary()
{
if (mbEncoded)
{
// in/out buffers can be the same
mnBinaryLen = sqlite3_decode_binary(mpBuf, mpBuf);
if (mnBinaryLen == -1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Cannot decode binary",
DONT_DELETE_MSG);
}
mbEncoded =
false;
}
return mpBuf;
}
int CppSQLite3Binary::getBinaryLength()
{
getBinary();
return mnBinaryLen;
}
unsigned
char* CppSQLite3Binary::allocBuffer(
int nLen)
{
clear();
// Allow extra space for encoded binary as per comments in
// SQLite encode.c See bottom of this file for implementation
// of SQLite functions use 3 instead of 2 just to be sure ;-)
mnBinaryLen = nLen;
mnBufferLen = 3 + (257*nLen)/254;
mpBuf = (unsigned
char*)malloc(mnBufferLen);
if (!mpBuf)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Cannot allocate memory",
DONT_DELETE_MSG);
}
mbEncoded =
false;
return mpBuf;
}
void CppSQLite3Binary::clear()
{
if (mpBuf)
{
mnBinaryLen = 0;
mnBufferLen = 0;
free(mpBuf);
mpBuf = 0;
}
}
////////////////////////////////////////////////////////////////////////////////
CppSQLite3Query::CppSQLite3Query()
{
mpVM = 0;
mbEof =
true;
mnCols = 0;
mbOwnVM =
false;
}
CppSQLite3Query::CppSQLite3Query(
const CppSQLite3Query& rQuery)
{
mpVM = rQuery.mpVM;
// Only one object can own the VM
const_cast<CppSQLite3Query&>(rQuery).mpVM = 0;
mbEof = rQuery.mbEof;
mnCols = rQuery.mnCols;
mbOwnVM = rQuery.mbOwnVM;
}
CppSQLite3Query::CppSQLite3Query(sqlite3* pDB,
sqlite3_stmt* pVM,
bool bEof,
bool bOwnVM
/*=true*/)
{
mpDB = pDB;
mpVM = pVM;
mbEof = bEof;
mnCols = sqlite3_column_count(mpVM);
mbOwnVM = bOwnVM;
}
CppSQLite3Query::~CppSQLite3Query()
{
try {
finalize();
}
catch (
)
{
}
}
CppSQLite3Query& CppSQLite3Query::
operator=(
const CppSQLite3Query& rQuery)
{
try {
finalize();
}
catch (
)
{
}
mpVM = rQuery.mpVM;
// Only one object can own the VM
const_cast<CppSQLite3Query&>(rQuery).mpVM = 0;
mbEof = rQuery.mbEof;
mnCols = rQuery.mnCols;
mbOwnVM = rQuery.mbOwnVM;
return *
this;
}
int CppSQLite3Query::numFields()
{
checkVM();
return mnCols;
}
const char* CppSQLite3Query::fieldValue(
int nField)
{
checkVM();
if (nField < 0 || nField > mnCols-1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field index requested",
DONT_DELETE_MSG);
}
return (
const char*)sqlite3_column_text(mpVM, nField);
}
const char* CppSQLite3Query::fieldValue(
const char* szField)
{
int nField = fieldIndex(szField);
return (
const char*)sqlite3_column_text(mpVM, nField);
}
int CppSQLite3Query::getIntField(
int nField,
int nNullValue
/*=0*/)
{
if (fieldDataType(nField) == SQLITE_NULL)
{
return nNullValue;
}
else {
return sqlite3_column_int(mpVM, nField);
}
}
int CppSQLite3Query::getIntField(
const char* szField,
int nNullValue
/*=0*/)
{
int nField = fieldIndex(szField);
return getIntField(nField, nNullValue);
}
double CppSQLite3Query::getFloatField(
int nField,
double fNullValue
/*=0.0*/)
{
if (fieldDataType(nField) == SQLITE_NULL)
{
return fNullValue;
}
else {
return sqlite3_column_double(mpVM, nField);
}
}
double CppSQLite3Query::getFloatField(
const char* szField,
double fNullValue
/*=0.0*/)
{
int nField = fieldIndex(szField);
return getFloatField(nField, fNullValue);
}
const char* CppSQLite3Query::getStringField(
int nField,
const char* szNullValue
/*=""*/)
{
if (fieldDataType(nField) == SQLITE_NULL)
{
return szNullValue;
}
else {
return (
const char*)sqlite3_column_text(mpVM, nField);
}
}
const char* CppSQLite3Query::getStringField(
const char* szField,
const char* szNullValue
/*=""*/)
{
int nField = fieldIndex(szField);
return getStringField(nField, szNullValue);
}
const unsigned
char* CppSQLite3Query::getBlobField(
int nField,
int& nLen)
{
checkVM();
if (nField < 0 || nField > mnCols-1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field index requested",
DONT_DELETE_MSG);
}
nLen = sqlite3_column_bytes(mpVM, nField);
return (
const unsigned
char*)sqlite3_column_blob(mpVM, nField);
}
const unsigned
char* CppSQLite3Query::getBlobField(
const char* szField,
int& nLen)
{
int nField = fieldIndex(szField);
return getBlobField(nField, nLen);
}
bool CppSQLite3Query::fieldIsNull(
int nField)
{
return (fieldDataType(nField) == SQLITE_NULL);
}
bool CppSQLite3Query::fieldIsNull(
const char* szField)
{
int nField = fieldIndex(szField);
return (fieldDataType(nField) == SQLITE_NULL);
}
int CppSQLite3Query::fieldIndex(
const char* szField)
{
checkVM();
if (szField)
{
for (
int nField = 0; nField < mnCols; nField++)
{
const char* szTemp = sqlite3_column_name(mpVM, nField);
if (strcmp(szField, szTemp) == 0)
{
return nField;
}
}
}
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field name requested",
DONT_DELETE_MSG);
}
const char* CppSQLite3Query::fieldName(
int nCol)
{
checkVM();
if (nCol < 0 || nCol > mnCols-1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field index requested",
DONT_DELETE_MSG);
}
return sqlite3_column_name(mpVM, nCol);
}
const char* CppSQLite3Query::fieldDeclType(
int nCol)
{
checkVM();
if (nCol < 0 || nCol > mnCols-1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field index requested",
DONT_DELETE_MSG);
}
return sqlite3_column_decltype(mpVM, nCol);
}
int CppSQLite3Query::fieldDataType(
int nCol)
{
checkVM();
if (nCol < 0 || nCol > mnCols-1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field index requested",
DONT_DELETE_MSG);
}
return sqlite3_column_type(mpVM, nCol);
}
bool CppSQLite3Query::eof()
{
checkVM();
return mbEof;
}
void CppSQLite3Query::nextRow()
{
checkVM();
int nRet = sqlite3_step(mpVM);
if (nRet == SQLITE_DONE)
{
// no rows
mbEof =
true;
}
else if (nRet == SQLITE_ROW)
{
// more rows, nothing to do
}
else {
nRet = sqlite3_finalize(mpVM);
mpVM = 0;
const char* szError = sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet,
(
char*)szError,
DONT_DELETE_MSG);
}
}
void CppSQLite3Query::finalize()
{
if (mpVM && mbOwnVM)
{
int nRet = sqlite3_finalize(mpVM);
mpVM = 0;
if (nRet != SQLITE_OK)
{
const char* szError = sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet, (
char*)szError, DONT_DELETE_MSG);
}
}
}
void CppSQLite3Query::checkVM()
{
if (mpVM == 0)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Null Virtual Machine pointer",
DONT_DELETE_MSG);
}
}
////////////////////////////////////////////////////////////////////////////////
CppSQLite3Table::CppSQLite3Table()
{
mpaszResults = 0;
mnRows = 0;
mnCols = 0;
mnCurrentRow = 0;
}
CppSQLite3Table::CppSQLite3Table(
const CppSQLite3Table& rTable)
{
mpaszResults = rTable.mpaszResults;
// Only one object can own the results
const_cast<CppSQLite3Table&>(rTable).mpaszResults = 0;
mnRows = rTable.mnRows;
mnCols = rTable.mnCols;
mnCurrentRow = rTable.mnCurrentRow;
}
CppSQLite3Table::CppSQLite3Table(
char** paszResults,
int nRows,
int nCols)
{
mpaszResults = paszResults;
mnRows = nRows;
mnCols = nCols;
mnCurrentRow = 0;
}
CppSQLite3Table::~CppSQLite3Table()
{
try {
finalize();
}
catch (
)
{
}
}
CppSQLite3Table& CppSQLite3Table::
operator=(
const CppSQLite3Table& rTable)
{
try {
finalize();
}
catch (
)
{
}
mpaszResults = rTable.mpaszResults;
// Only one object can own the results
const_cast<CppSQLite3Table&>(rTable).mpaszResults = 0;
mnRows = rTable.mnRows;
mnCols = rTable.mnCols;
mnCurrentRow = rTable.mnCurrentRow;
return *
this;
}
void CppSQLite3Table::finalize()
{
if (mpaszResults)
{
sqlite3_free_table(mpaszResults);
mpaszResults = 0;
}
}
int CppSQLite3Table::numFields()
{
checkResults();
return mnCols;
}
int CppSQLite3Table::numRows()
{
checkResults();
return mnRows;
}
const char* CppSQLite3Table::fieldValue(
int nField)
{
checkResults();
if (nField < 0 || nField > mnCols-1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field index requested",
DONT_DELETE_MSG);
}
int nIndex = (mnCurrentRow*mnCols) + mnCols + nField;
return mpaszResults[nIndex];
}
const char* CppSQLite3Table::fieldValue(
const char* szField)
{
checkResults();
if (szField)
{
for (
int nField = 0; nField < mnCols; nField++)
{
if (strcmp(szField, mpaszResults[nField]) == 0)
{
int nIndex = (mnCurrentRow*mnCols) + mnCols + nField;
return mpaszResults[nIndex];
}
}
}
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field name requested",
DONT_DELETE_MSG);
}
int CppSQLite3Table::getIntField(
int nField,
int nNullValue
/*=0*/)
{
if (fieldIsNull(nField))
{
return nNullValue;
}
else {
return atoi(fieldValue(nField));
}
}
int CppSQLite3Table::getIntField(
const char* szField,
int nNullValue
/*=0*/)
{
if (fieldIsNull(szField))
{
return nNullValue;
}
else {
return atoi(fieldValue(szField));
}
}
double CppSQLite3Table::getFloatField(
int nField,
double fNullValue
/*=0.0*/)
{
if (fieldIsNull(nField))
{
return fNullValue;
}
else {
return atof(fieldValue(nField));
}
}
double CppSQLite3Table::getFloatField(
const char* szField,
double fNullValue
/*=0.0*/)
{
if (fieldIsNull(szField))
{
return fNullValue;
}
else {
return atof(fieldValue(szField));
}
}
const char* CppSQLite3Table::getStringField(
int nField,
const char* szNullValue
/*=""*/)
{
if (fieldIsNull(nField))
{
return szNullValue;
}
else {
return fieldValue(nField);
}
}
const char* CppSQLite3Table::getStringField(
const char* szField,
const char* szNullValue
/*=""*/)
{
if (fieldIsNull(szField))
{
return szNullValue;
}
else {
return fieldValue(szField);
}
}
bool CppSQLite3Table::fieldIsNull(
int nField)
{
checkResults();
return (fieldValue(nField) == 0);
}
bool CppSQLite3Table::fieldIsNull(
const char* szField)
{
checkResults();
return (fieldValue(szField) == 0);
}
const char* CppSQLite3Table::fieldName(
int nCol)
{
checkResults();
if (nCol < 0 || nCol > mnCols-1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid field index requested",
DONT_DELETE_MSG);
}
return mpaszResults[nCol];
}
void CppSQLite3Table::setRow(
int nRow)
{
checkResults();
if (nRow < 0 || nRow > mnRows-1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid row index requested",
DONT_DELETE_MSG);
}
mnCurrentRow = nRow;
}
void CppSQLite3Table::checkResults()
{
if (mpaszResults == 0)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Null Results pointer",
DONT_DELETE_MSG);
}
}
////////////////////////////////////////////////////////////////////////////////
CppSQLite3Statement::CppSQLite3Statement()
{
mpDB = 0;
mpVM = 0;
}
CppSQLite3Statement::CppSQLite3Statement(
const CppSQLite3Statement& rStatement)
{
mpDB = rStatement.mpDB;
mpVM = rStatement.mpVM;
// Only one object can own VM
const_cast<CppSQLite3Statement&>(rStatement).mpVM = 0;
}
CppSQLite3Statement::CppSQLite3Statement(sqlite3* pDB, sqlite3_stmt* pVM)
{
mpDB = pDB;
mpVM = pVM;
}
CppSQLite3Statement::~CppSQLite3Statement()
{
try {
finalize();
}
catch (
)
{
}
}
CppSQLite3Statement& CppSQLite3Statement::
operator=(
const CppSQLite3Statement& rStatement)
{
mpDB = rStatement.mpDB;
mpVM = rStatement.mpVM;
// Only one object can own VM
const_cast<CppSQLite3Statement&>(rStatement).mpVM = 0;
return *
this;
}
int CppSQLite3Statement::execDML()
{
checkDB();
checkVM();
const char* szError=0;
int nRet = sqlite3_step(mpVM);
if (nRet == SQLITE_DONE)
{
int nRowsChanged = sqlite3_changes(mpDB);
nRet = sqlite3_reset(mpVM);
if (nRet != SQLITE_OK)
{
szError = sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet, (
char*)szError, DONT_DELETE_MSG);
}
return nRowsChanged;
}
else {
nRet = sqlite3_reset(mpVM);
szError = sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet, (
char*)szError, DONT_DELETE_MSG);
}
}
CppSQLite3Query CppSQLite3Statement::execQuery()
{
checkDB();
checkVM();
int nRet = sqlite3_step(mpVM);
if (nRet == SQLITE_DONE)
{
// no rows
return CppSQLite3Query(mpDB, mpVM,
true/*eof*/,
false);
}
else if (nRet == SQLITE_ROW)
{
// at least 1 row
return CppSQLite3Query(mpDB, mpVM,
false/*eof*/,
false);
}
else {
nRet = sqlite3_reset(mpVM);
const char* szError = sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet, (
char*)szError, DONT_DELETE_MSG);
}
}
void CppSQLite3Statement::bind(
int nParam,
const char* szValue)
{
checkVM();
int nRes = sqlite3_bind_text(mpVM, nParam, szValue, -1, SQLITE_TRANSIENT);
if (nRes != SQLITE_OK)
{
throw CppSQLite3Exception(nRes,
"Error binding string param",
DONT_DELETE_MSG);
}
}
void CppSQLite3Statement::bind(
int nParam,
const int nValue)
{
checkVM();
int nRes = sqlite3_bind_int(mpVM, nParam, nValue);
if (nRes != SQLITE_OK)
{
throw CppSQLite3Exception(nRes,
"Error binding int param",
DONT_DELETE_MSG);
}
}
void CppSQLite3Statement::bind(
int nParam,
const double dValue)
{
checkVM();
int nRes = sqlite3_bind_double(mpVM, nParam, dValue);
if (nRes != SQLITE_OK)
{
throw CppSQLite3Exception(nRes,
"Error binding double param",
DONT_DELETE_MSG);
}
}
void CppSQLite3Statement::bind(
int nParam,
const unsigned
char* blobValue,
int nLen)
{
checkVM();
int nRes = sqlite3_bind_blob(mpVM, nParam,
(
const void*)blobValue, nLen, SQLITE_TRANSIENT);
if (nRes != SQLITE_OK)
{
throw CppSQLite3Exception(nRes,
"Error binding blob param",
DONT_DELETE_MSG);
}
}
void CppSQLite3Statement::bindNull(
int nParam)
{
checkVM();
int nRes = sqlite3_bind_null(mpVM, nParam);
if (nRes != SQLITE_OK)
{
throw CppSQLite3Exception(nRes,
"Error binding NULL param",
DONT_DELETE_MSG);
}
}
void CppSQLite3Statement::reset()
{
if (mpVM)
{
int nRet = sqlite3_reset(mpVM);
if (nRet != SQLITE_OK)
{
const char* szError = sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet, (
char*)szError, DONT_DELETE_MSG);
}
}
}
void CppSQLite3Statement::finalize()
{
if (mpVM)
{
int nRet = sqlite3_finalize(mpVM);
mpVM = 0;
if (nRet != SQLITE_OK)
{
const char* szError = sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet, (
char*)szError, DONT_DELETE_MSG);
}
}
}
void CppSQLite3Statement::checkDB()
{
if (mpDB == 0)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Database not open",
DONT_DELETE_MSG);
}
}
void CppSQLite3Statement::checkVM()
{
if (mpVM == 0)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Null Virtual Machine pointer",
DONT_DELETE_MSG);
}
}
////////////////////////////////////////////////////////////////////////////////
CppSQLite3DB::CppSQLite3DB()
{
mpDB = 0;
mnBusyTimeoutMs = 60000;
// 60 seconds
}
CppSQLite3DB::CppSQLite3DB(
const CppSQLite3DB& db)
{
mpDB = db.mpDB;
mnBusyTimeoutMs = 60000;
// 60 seconds
}
CppSQLite3DB::~CppSQLite3DB()
{
close();
}
CppSQLite3DB& CppSQLite3DB::
operator=(
const CppSQLite3DB& db)
{
mpDB = db.mpDB;
mnBusyTimeoutMs = 60000;
// 60 seconds
return *
this;
}
void CppSQLite3DB::open(
const char* szFile)
{
int nRet = sqlite3_open(szFile, &mpDB);
if (nRet != SQLITE_OK)
{
const char* szError = sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet, (
char*)szError, DONT_DELETE_MSG);
}
setBusyTimeout(mnBusyTimeoutMs);
}
void CppSQLite3DB::close()
{
if (mpDB)
{
sqlite3_close(mpDB);
mpDB = 0;
}
}
CppSQLite3Statement CppSQLite3DB::compileStatement(
const char* szSQL)
{
checkDB();
sqlite3_stmt* pVM = compile(szSQL);
return CppSQLite3Statement(mpDB, pVM);
}
bool CppSQLite3DB::tableExists(
const char* szTable)
{
char szSQL[128];
sprintf(szSQL,
"select count(*) from sqlite_master where type='table' and name='%s'",
szTable);
int nRet = execScalar(szSQL);
return (nRet > 0);
}
int CppSQLite3DB::execDML(
const char* szSQL)
{
checkDB();
char* szError=0;
int nRet = sqlite3_exec(mpDB, szSQL, 0, 0, &szError);
if (nRet == SQLITE_OK)
{
return sqlite3_changes(mpDB);
}
else {
throw CppSQLite3Exception(nRet, szError);
}
}
CppSQLite3Query CppSQLite3DB::execQuery(
const char* szSQL)
{
checkDB();
sqlite3_stmt* pVM = compile(szSQL);
int nRet = sqlite3_step(pVM);
if (nRet == SQLITE_DONE)
{
// no rows
return CppSQLite3Query(mpDB, pVM,
true/*eof*/);
}
else if (nRet == SQLITE_ROW)
{
// at least 1 row
return CppSQLite3Query(mpDB, pVM,
false/*eof*/);
}
else {
nRet = sqlite3_finalize(pVM);
const char* szError= sqlite3_errmsg(mpDB);
throw CppSQLite3Exception(nRet, (
char*)szError, DONT_DELETE_MSG);
}
}
int CppSQLite3DB::execScalar(
const char* szSQL)
{
CppSQLite3Query q = execQuery(szSQL);
if (q.eof() || q.numFields() < 1)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Invalid scalar query",
DONT_DELETE_MSG);
}
return atoi(q.fieldValue(0));
}
CppSQLite3Table CppSQLite3DB::getTable(
const char* szSQL)
{
checkDB();
char* szError=0;
char** paszResults=0;
int nRet;
int nRows(0);
int nCols(0);
nRet = sqlite3_get_table(mpDB, szSQL, &paszResults, &nRows, &nCols, &szError);
if (nRet == SQLITE_OK)
{
return CppSQLite3Table(paszResults, nRows, nCols);
}
else {
throw CppSQLite3Exception(nRet, szError);
}
}
sqlite_int64 CppSQLite3DB::lastRowId()
{
return sqlite3_last_insert_rowid(mpDB);
}
void CppSQLite3DB::setBusyTimeout(
int nMillisecs)
{
mnBusyTimeoutMs = nMillisecs;
sqlite3_busy_timeout(mpDB, mnBusyTimeoutMs);
}
void CppSQLite3DB::checkDB()
{
if (!mpDB)
{
throw CppSQLite3Exception(CPPSQLITE_ERROR,
"Database not open",
DONT_DELETE_MSG);
}
}
sqlite3_stmt* CppSQLite3DB::compile(
const char* szSQL)
{
checkDB();
char* szError=0;
const char* szTail=0;
sqlite3_stmt* pVM;
int nRet = sqlite3_prepare(mpDB, szSQL, -1, &pVM, &szTail);
if (nRet != SQLITE_OK)
{
throw CppSQLite3Exception(nRet, szError);
}
return pVM;
}
////////////////////////////////////////////////////////////////////////////////
// SQLite encode.c reproduced here, containing implementation notes and source
// for sqlite3_encode_binary() and sqlite3_decode_binary()
////////////////////////////////////////////////////////////////////////////////
/*
** 2002 April 25
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains helper routines used to translate binary data into
** a null-terminated string (suitable for use in SQLite) and back again.
** These are convenience routines for use by people who want to store binary
** data in an SQLite database. The code in this file is not used by any other
** part of the SQLite library.
**
** $Id: encode.c,v 1.10 2004/01/14 21:59:23 drh Exp $
*//*
** How This Encoder Works
**
** The output is allowed to contain any character except 0x27 (') and
** 0x00. This is accomplished by using an escape character to encode
** 0x27 and 0x00 as a two-byte sequence. The escape character is always
** 0x01. An 0x00 is encoded as the two byte sequence 0x01 0x01. The
** 0x27 character is encoded as the two byte sequence 0x01 0x03. Finally,
** the escape character itself is encoded as the two-character sequence
** 0x01 0x02.
**
** To summarize, the encoder works by using an escape sequences as follows:
**
** 0x00 -> 0x01 0x01
** 0x01 -> 0x01 0x02
** 0x27 -> 0x01 0x03
**
** If that were all the encoder did, it would work, but in certain cases
** it could double the size of the encoded string. For example, to
** encode a string of 100 0x27 characters would require 100 instances of
** the 0x01 0x03 escape sequence resulting in a 200-character output.
** We would prefer to keep the size of the encoded string smaller than
** this.
**
** To minimize the encoding size, we first add a fixed offset value to each
** byte in the sequence. The addition is modulo 256. (That is to say, if
** the sum of the original character value and the offset exceeds 256, then
** the higher order bits are truncated.) The offset is chosen to minimize
** the number of characters in the string that need to be escaped. For
** example, in the case above where the string was composed of 100 0x27
** characters, the offset might be 0x01. Each of the 0x27 characters would
** then be converted into an 0x28 character which would not need to be
** escaped at all and so the 100 character input string would be converted
** into just 100 characters of output. Actually 101 characters of output -
** we have to record the offset used as the first byte in the sequence so
** that the string can be decoded. Since the offset value is stored as
** part of the output string and the output string is not allowed to contain
** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
**
** Here, then, are the encoding steps:
**
** (1) Choose an offset value and make it the first character of
** output.
**
** (2) Copy each input character into the output buffer, one by
** one, adding the offset value as you copy.
**
** (3) If the value of an input character plus offset is 0x00, replace
** that one character by the two-character sequence 0x01 0x01.
** If the sum is 0x01, replace it with 0x01 0x02. If the sum
** is 0x27, replace it with 0x01 0x03.
**
** (4) Put a 0x00 terminator at the end of the output.
**
** Decoding is obvious:
**
** (5) Copy encoded characters except the first into the decode
** buffer. Set the first encoded character aside for use as
** the offset in step 7 below.
**
** (6) Convert each 0x01 0x01 sequence into a single character 0x00.
** Convert 0x01 0x02 into 0x01. Convert 0x01 0x03 into 0x27.
**
** (7) Subtract the offset value that was the first character of
** the encoded buffer from all characters in the output buffer.
**
** The only tricky part is step (1) - how to compute an offset value to
** minimize the size of the output buffer. This is accomplished by testing
** all offset values and picking the one that results in the fewest number
** of escapes. To do that, we first scan the entire input and count the
** number of occurances of each character value in the input. Suppose
** the number of 0x00 characters is N(0), the number of occurances of 0x01
** is N(1), and so forth up to the number of occurances of 0xff is N(255).
** An offset of 0 is not allowed so we don't have to test it. The number
** of escapes required for an offset of 1 is N(1)+N(2)+N(40). The number
** of escapes required for an offset of 2 is N(2)+N(3)+N(41). And so forth.
** In this way we find the offset that gives the minimum number of escapes,
** and thus minimizes the length of the output string.
*//*
** Encode a binary buffer "in" of size n bytes so that it contains
** no instances of characters '\'' or '\000'. The output is
** null-terminated and can be used as a string value in an INSERT
** or UPDATE statement. Use sqlite3_decode_binary() to convert the
** string back into its original binary.
**
** The result is written into a preallocated output buffer "out".
** "out" must be able to hold at least 2 +(257*n)/254 bytes.
** In other words, the output will be expanded by as much as 3
** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
**
** The return value is the number of characters in the encoded
** string, excluding the "\000" terminator.
*/int sqlite3_encode_binary(
const unsigned
char *
in,
int n, unsigned
char *
out){
int i, j, e, m;
int cnt[256];
if( n<=0 ){
out[0] = 'x';
out[1] = 0;
return 1;
}
memset(cnt, 0,
sizeof(cnt));
for(i=n-1; i>=0; i--){ cnt[
in[i]]++; }
m = n;
for(i=1; i<256; i++){
int sum;
if( i=='\'' ) continue;
sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
if( sum<m ){
m = sum;
e = i;
if( m==0 )
break;
}
}
out[0] = e;
j = 1;
for(i=0; i<n; i++){
int c = (
in[i] - e)&0xff;
if( c==0 ){
out[j++] = 1;
out[j++] = 1;
}
else if( c==1 ){
out[j++] = 1;
out[j++] = 2;
}
else if( c=='\'' ){
out[j++] = 1;
out[j++] = 3;
}
else{
out[j++] = c;
}
}
out[j] = 0;
return j;
}
/*
** Decode the string "in" into binary data and write it into "out".
** This routine reverses the encoding created by sqlite3_encode_binary().
** The output will always be a few bytes less than the input. The number
** of bytes of output is returned. If the input is not a well-formed
** encoding, -1 is returned.
**
** The "in" and "out" parameters may point to the same buffer in order
** to decode a string in place.
*/int sqlite3_decode_binary(
const unsigned
char *
in, unsigned
char *
out){
int i, c, e;
e = *(
in++);
i = 0;
while( (c = *(
in++))!=0 ){
if( c==1 ){
c = *(
in++);
if( c==1 ){
c = 0;
}
else if( c==2 ){
c = 1;
}
else if( c==3 ){
c = '\'';
}
else{
return -1;
}
}
out[i++] = (c + e)&0xff;
}
return i;
}
还有一个老封装的
http://www.adp-gmbh.ch/sqlite/wrapper.html