Uriel's Corner

Research Associate @ Harvard University / Research Interests: Computer Vision, Biomedical Image Analysis, Machine Learning
posts - 0, comments - 50, trackbacks - 0, articles - 594

Codeforces Round #289 (Div. 2, ACM ICPC Rules)

Posted on 2015-01-31 23:38 Uriel 阅读(207) 评论(0)  编辑 收藏 引用 所属分类: Codeforces
E. Pretty Song
题目意思是求一个单词串所有连续子串的元音字母比例之和,原因字母定义为:I, E, A, O, U, Y
举例来说:
单词:
BYOB(元音字母有:Y和O)
一个字母的子串:B,Y,O,B
sigma=0/1+1/1+1/1+0/1=2
两个字母的子串:B,Y,O,B
sigma=0/2+2/2+2/2+0/1=2
三个字母的子串:B,Y,O,B
sigma=0/3+2/3+2/3+0/3=1.33
四个字母的子串:B,Y,O,B
sigma=0/4+1/4+1/4+0/4=0.5
总加和为5.833
通过找规律可以发现,一个字符串的连续子串中每一个字母在该长度所有子串中的出现次数是有规律的
比如一个长度为7的字符串,它的每一个字母在所有子串中的次数如以下矩阵所示:
其中行代表每种长度的子串(从1到n),列代表该字符串中每一个字母在各长度子串中的出现次数
1 1 1 1 1 1 1
1 2 2 2 2 2 1
1 2 3 3 3 2 1
1 2 3 4 3 2 1
1 2 3 3 3 2 1
1 2 2 2 2 2 1
1 1 1 1 1 1 1
假设该矩阵为a[][],那么最终的答案就应该为sigma(a[i][j]*b[j]/j),考虑到i和j的范围都到5*10^5,如果直接算,肯定TLE
然后观察这个矩阵,发现下一行跟上一行相比,只是多增加了中间一段(比如第二行相比于第一行增加了2~n-1这n-2个位置),而且都是增加1,然后求和的时候除数不同
于是可以想到用树状数组/线段树存储1~n个元素的值,这样每次取其中一段求和复杂度就是log级别,时限ok
实现的时候注意这个矩阵是对称的,所以循环只到行数的一半,奇数行特判一下(这里写的比较挫)

PS:直接保存累加和就行了。不用树状数组啥的,【脑残。。杀鸡用牛刀。。
挫代码如下:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

double a[500010];
int fg[500010], n;
char s[500010];

int Lowbit(int n) {
    return n & (-n);
}

void Modify(int i) {
    while(i <= n) {
        a[i] += 1.0;
        i += Lowbit(i);
    }
}

double Add(int i) {
    double res = 0;
    while(i != 0) {
        res += a[i];
        i -= Lowbit(i);
    }
    return res;
}

int main() {
    int i;
    double res = 0, pre1 = 0, pre2 = 0, tp = 0, nt = 0;
    scanf("%s", s);
    memset(a, 0, sizeof(a));
    n = strlen(s);
    for(i = 0; i < n; ++i) {
        if(s[i] == 'I' || s[i] == 'E' || s[i] == 'A' || s[i] == 'O' || s[i] == 'U' || s[i] == 'Y') {
            fg[i + 1] = 1;
            Modify(i + 1);
        }
        else
            fg[i] = 0;
    }
    for(i = 1; i <= n/2; ++i) {
        res += nt / i;
        res += nt / (n-i+1);
        tp = Add(n-i+1) - Add(i-1);
        nt += tp;
        pre1 = tp / i;
        pre2 = tp / (n-i+1);
        res += pre1;
        res += pre2;
    }
    if(n%2) {
        res += nt / i;
        tp = Add(n-i+1) - Add(i-1);
        nt += tp;
        pre1 = tp / i;
        res += pre1;
    }
    printf("%.6lf\n", res);
    return 0;
}

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理