 /**//*
很直观的想法,用两根线扫描,得到条状区域
快速求固定高为h的区域比较难,但是求连续的一段却是比较容易
即[1,x] 这么多个的连加和
所以建立这样的值: (y,v) (y+h+1,-v) 这样就能中和掉了
然后用完全二叉树 sum[p]表示根为mid的这一子树的和,maxSum[p]表示以mid根子树中连续的和
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int MAXN=10010;

int n,w,h;
int tot;
unsigned int y[MAXN*2]; //注意要用unsigned int 2^31+h会超int
int sum[MAXN*8],maxSum[MAXN*8];

 struct Point {
unsigned int x,y;
int v;
 bool operator<(const Point &p)const {
return x<p.x;
}
}points[MAXN*2];

 /**//*
向下找到x所在节点,这一路上都要更新
注意递归写法,不是x==mid 就return
*/
 void insert(int p,int left,int right,int x,int c) {
int mid=(left+right)>>1;
 if(x!=mid) {
if(x<mid)insert(2*p,left,mid-1,x,c);
else insert(2*p+1,mid+1,right,x,c);
}
sum[p]+=c;
maxSum[p]=maxSum[2*p];
maxSum[p]=max(maxSum[p],sum[p]-sum[2*p+1]);
maxSum[p]=max(maxSum[p],sum[p]-sum[2*p+1]+maxSum[2*p+1]);
}
 int find(unsigned int x) {
int low=1,high=tot;
 while(high>=low) {
int mid=(high+low)>>1;
if(y[mid]==x)return mid;
if(y[mid]>x)high=mid-1;
else low=mid+1;
}
}

 int main() {
 while(~scanf("%d%d%d",&n,&w,&h)) {
w--;h--; //不含边界
tot=0;
 for(int i=1;i<=n;i++) {
scanf("%u%u%d",&points[i].x,&points[i].y,&points[i].v);
y[++tot]=points[i].y;y[++tot]=points[i].y+h+1;
points[n+i].x=points[i].x,points[n+i].y=points[i].y+h+1,points[n+i].v=-points[i].v;
}
sort(y+1,y+1+tot);
tot=unique(y+1,y+1+tot)-(y+1);
n=n*2;
sort(points+1,points+1+n);
memset(sum,0,sizeof(sum));
memset(maxSum,0,sizeof(maxSum));
int ans=0,s=1,t=1;
 while(t<=n) { //注意不要按x坐标扫,会超时
int x=points[t].x;
while(s<=n&&x-points[s].x>w)
insert(1,1,tot,find(points[s].y),-points[s].v),s++;
while(t<=n&&points[t].x==x) //把同一列的加进去
insert(1,1,tot,find(points[t].y),points[t].v),t++;
ans=max(ans,maxSum[1]); //求连续一段的和
}
printf("%d\n",ans);
}
return 0;
}
 /**//*
3 2 2
0 0 2
2 2 3
4 4 6
*/
|