原来网络流也能二分,今天终于见识了。。。
二分+最大流
题目大意:给定n个人m场比赛,问赢的最多的人最少赢几场
二分答案,增加源汇点,左边一排是比赛点,右边是球员,若有比赛,比赛向俩球员连容量为1的边
源点向比赛连容量为1的边,球员向汇点连容量为二分枚举值的边,判断是最大流是否等于比赛个数
网络流的构图真是个神奇的东西,我承认如果不看网上的解题报告,我真的很难想到,首先是题意不太明确,刚开始我还以为赢的最多的选手胜利的场次必须是最多的。。。但是从样例来看,貌似就算每个人都赢一场也会有冠军出现。。。说说我的理解吧,从超级源点引一条边至代表每场比赛的节点,限制每场比赛的胜利者只有一个人,这个流量如果在射出到某个选手的一条边中,代表这场比赛是他取胜。每个选手到汇点连一条二分枚举的边,就是限制胜利场次的上界,如果最后的最大流等于m,说明这m场比赛的的胜者可以合理的分配,如果不能,说明比赛不能正常进行。又可以分析得出,如果某一个二分值mid满足要求,那么比他大的值一定也满足要求。故可二分枚举答案。(PS:这题的复杂度应该是(10000+10000+2)^2*(m*2+m+n)*log 10000.总觉得要超时啊。。。难道数据弱了?)
int n,m;

struct node2


{
int a,b;
}re[100000];

bool check(int n,int m,int mid)


{
int i;
for(i=0;i<n+m+2;i++)
adj[i]=NULL;
len=0;
int s=n+m;
int t=s+1;
for(i=0;i<m;i++)
insert(s,i,1);
for(i=0;i<n;i++)
insert(m+i,t,mid);
for(i=0;i<m;i++)

{
insert(i,m+re[i].a,1);
insert(i,m+re[i].b,1);
}
return dinic(t+1,s,t)==m;
}

int main()


{
int i;
while(scanf("%d%d",&n,&m)!=EOF)

{
for(i=0;i<m;i++)

{
scanf("%d%d",&re[i].a,&re[i].b);
re[i].a--;
re[i].b--;
}
int l=1,r=m;
int ans=-1;
while(l<=r)

{

int mid=(l+r)>>1;
if(check(n,m,mid))

{
ans=mid;
r=mid-1;
}
else
l=mid+1;
}
printf("%d\n",ans);
}
return 0;


}