注意不要说类的大小,是类的对象的大小.
首先,类的大小是什么?确切的说,类只是一个类型定义,它是没有大小可言的。
用sizeof运算符对一个类型名操作,得到的是具有该类型实体的大小。
如果
Class A;
A obj;
那么sizeof(A)==sizeof(obj)
那么sizeof(A)的大小和成员的大小总和是什么关系呢,很简单,一个对象的大小大于等于所有非静态成员大小的总和。
为什么是大于等于而不是正好相等呢?超出的部分主要有以下两方面:
1) C++对象模型本身
对于具有虚函数的类型来说,需要有一个方法为它的实体提供类型信息(RTTI)和虚函数入口,常见的方法是建立一个虚函数入口表,这个表可为相同类型的对象共享,因此对象中需要有一个指向虚函数表的指针,此外,为了支持RTTI,许多编译器都把该类型信息放在虚函数表中。但是,是否必须采用这种实现方法,C++标准没有规定,但是这几户是主流编译器均采用的一种方案。
2) 编译器优化
因为对于大多数CPU来说,CPU字长的整数倍操作起来更快,因此对于这些成员加起来如果不够这个整数倍,有可能编译器会插入多余的内容凑足这个整数倍,此外,有时候相邻的成员之间也有可能因为这个目的被插入空白,这个叫做“补齐”(padding)。所以,C++标准紧紧规定成员的排列按照类定义的顺序,但是不要求在存储器中是紧密排列的。
基于上述两点,可以说用sizeof对类名操作,得到的结果是该类的对象在存储器中所占据的字节大小,由于静态成员变量不在对象中存储,因此这个结果等于各非静态数据成员(不包括成员函数)的总和加上编译器额外增加的字节。后者依赖于不同的编译器实现,C++标准对此不做任何保证。
C++标准规定类的大小不为0,空类的大小为1,当类不包含虚函数和非静态数据成员时,其对象大小也为1。
如果在类中声明了虚函数(不管是1个还是多个),那么在实例化对象时,编译器会自动在对象里安插一个指针指向虚函数表VTable,在32位机器上,一个对象会增加4个字节来存储此指针,它是实现面向对象中多态的关键。而虚函数本身和其他成员函数一样,是不占用对象的空间的。
我们来看下面一个例子:(此例子在Visual C++编译器中编译运行)
#include <iostream>
using namespace std;
class A
{
};
class B
{
char ch;
void func()
{
}
};
class C
{
char ch1; //占用1字节
char ch2; //占用1字节
virtual void func()
{
}
};
class D
{
int in;
virtual void func()
{
}
};
void main()
{
A a;
B b;
C c;
D d;
cout<< sizeof (a)<<endl; //result=1
cout<< sizeof (b)<<endl; //result=1 //对象c扩充为2个字,但是对象b为什么没扩充为1个字呢?大家帮忙解决
cout<< sizeof (c)<<endl; //result=8
//对象c实际上只有6字节有用数据,但是按照上面第二点编译器优化,编译器将此扩展为两个字,即8字节
cout<< sizeof (d)<<endl; //result=8
}
|
综上所述:
一个类中,虚函数、成员函数(包括静态与非静态)和静态数据成员都是不占用类对象的存储空间的。
对象大小= vptr(可能不止一个) + 所有非静态数据成员大小 + Aligin字节大小(依赖于不同的编译器)
#include <iostream>
using namespace std;
class demo1{
};
class demo2{
static int num;
};
class demo3{
virtual int print(){}
virtual int print1(){}
};
class demo4{
void print(){}
static void print1(){}
};
class demo5{
char a;
};
int _tmain( int argc, _TCHAR* argv[])
{
cout<< "空类的大小为:" << sizeof (demo1)<<endl;
//当类不包含虚函数和非静态数据成员时,其对象大小也为1。
cout<< "当类不包含虚函数和非静态数据成员时,其对象大小也为:" << sizeof (demo2)<<endl;
cout<< "与类中虚函数的个数无关" << sizeof (demo3)<<endl; //大小是4,与类中虚函数的个数无关,
cout<< "成员函数(静态和非静态)也不占用类对象的存储空间" << sizeof (demo4)<<endl;
cout<< sizeof (demo5)<<endl;
demo5 d;
cout<< sizeof (d)<<endl;
return 0;
}
|