poj 2417 Discrete Logging

   这是个求离散对数的问题。以前学密码学基础的时候也接触过,但是没想到acm里面还会有这样的习题。
   问题的意思是给定素数P,给出方程a^x = b % p,注意有模的方程等式2边都是取模数的意思。解这样的方程有一个固定的算法,
叫做baby-step算法。但是,注意限定条件是p必须是素数。
   下面的图描述了这个算法:


   意思很清楚,就是假设x = i * m + j,那么方程可以转化为b*(a^-m)^i  = a^j % p。先计算出右边的值,存储在一张表里面,
然后从小到大枚举左边的i(0<=i<m),率先满足等式的就是最小的解x。
   poj上面这个题用map存储(a^j,j)对的时候会超时,改成hash表存储才能过,额,毕竟理论复杂度不是一个数量级的。我的hash表是
开了2个数组,一个键,一个值,用来相互验证,槽冲突的话,一直往后找位置。感觉这样的做法没有链式hash复杂度平均的样子。
   代码如下:
#include <stdio.h>
#include <math.h>
#include <algorithm>
using namespace std;

#define MAX (1000000)
long long nData[MAX];
long long nKey[MAX];
long long egcd(long long a, long long b, long long& x, long long& y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    long long ret = egcd(b, a % b, x, y);
    long long t = x;
    x = y;
    y = t - (a / b) * y;
    return ret;
}

long long GetPos(long long key)
{
     return (key ^ 0xA5A5A5A5) % MAX;
}

void Add(long long key, long long data)
{
    long long nPos = GetPos(key);
    while (nData[nPos] != -1)
    {
        nPos = (nPos + 1) % MAX;
    }
    nData[nPos] = data;
    nKey[nPos] = key;
}

int Query(int key)
{
    int nPos = GetPos(key);
    
    while (nData[nPos] != -1)
    {
        if (nKey[nPos] == key)
        {
            return nData[nPos];
        }
        nPos = (nPos + 1) % MAX;
    }
    return -1;
}

long long BabyStep(long long nA, long long nB, long long nP)
{
    long long nM = ceil(sqrt((double)(nP - 1)));
    long long x, y;
    egcd(nP, nA, x, y);//y是nA%p的乘法逆
    y = (y + nP) % nP;
    long long nTemp = 1;
    long long c = 1;//c是nA的—m次
    memset(nData, -1, sizeof(nData));
    memset(nKey, -1, sizeof(nKey));
    for (long long j = 0; j < nM; ++j)
    {
        Add(nTemp, j);
        nTemp = (nTemp * nA) % nP;
        c = (c * y) % nP;
    }
    
    long long r = nB;
    for (int i = 0; i < nM; ++i)
    {
        long long j = Query(r);
        if (j != -1)
        {
            return i * nM + j;
        }
        r = (r * c) % nP;
    }
    return -1;
}

int main()
{
    long long nP, nB, nN;
    
    while (scanf("%I64d%I64d%I64d", &nP, &nB, &nN) == 3)
    {
        long long nAns = BabyStep(nB, nN, nP);
        if (nAns == -1)printf("no solution\n");
        else printf("%I64d\n", nAns);
    }
    
    return 0;
}

posted on 2012-07-29 19:38 yx 阅读(1158) 评论(0)  编辑 收藏 引用 所属分类: 数论


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理


<2012年3月>
26272829123
45678910
11121314151617
18192021222324
25262728293031
1234567

导航

统计

公告

常用链接

留言簿(3)

随笔分类

随笔档案

me

好友

同学

网友

搜索

最新评论

阅读排行榜

评论排行榜