poj 2778 DNA Sequence AC自动机+矩阵快速冥

   题意很简单,假定文本集就是A,C,T,G,给定M个模式串,问你长度为N的文本不出现这些模式
串的可能性到底有多少种。。。
   确实非常不直观的样子。。。
   解法是先学学AC自动机,建立起Trie图,根据trie图可以得到长度为1的路径矩阵,然后再快速
冥得到长度为N的路径矩阵。
   说起来都非常纠结,没学过AC自动机更加无法理解。学AC自动机之前据说得先学Trie树和KMP
才好理解。学AC自动机搞Trie图就花费了近2天了,然后弄懂这个题又是一天,好在基本明白了。
   马上快比赛了,从长春换到金华也不知道是好是坏。。。还是弱菜啊。。。
   贴下我的Trie图+快速冥(直接二分了,没有写成数论里面那种算法)...

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;

typedef long long INT;
const int MOD = 100000;
const int MAX_P = 100;
const int MAX_D = 4;
int nIdx[256];
char szPat[MAX_P];
INT nMatrix[MAX_P][MAX_P];
INT B[MAX_P][MAX_P];
INT A[MAX_P][MAX_P];

void InitIdx()
{
    nIdx['A'] = 0;
    nIdx['C'] = 1;
    nIdx['T'] = 2;
    nIdx['G'] = 3;
}

struct Trie
{
    Trie* fail;
    Trie* next[MAX_D];
    int no;
    bool flag;
    Trie()
    {
        fail = NULL;
        memset(next, 0, sizeof(next));
        no = 0;
        flag = false;
    }
};
Trie tries[MAX_D * MAX_P];
int nP;
Trie* pRoot;

Trie* NewNode()
{
    memset(&tries[nP], 0, sizeof(Trie));
    tries[nP].no = nP;
    return &tries[nP++];
}

void InitTrie(Trie*& pRoot)
{
    nP = 0;
    pRoot = NewNode();
}

void Insert(char* pszPat)
{
    Trie* pNode = pRoot;
    
    while (*pszPat)
    {
        if (pNode->next[nIdx[*pszPat]] == NULL)
        {
            pNode->next[nIdx[*pszPat]] = NewNode();
        }
        pNode = pNode->next[nIdx[*pszPat]];
        ++pszPat;
    }
    pNode->flag = true;
}

int BuildAC(Trie* pRoot)
{
    memset(nMatrix, 0, sizeof(nMatrix));
    
    pRoot->fail = NULL;
    queue<Trie*> qt;
    qt.push(pRoot);
    while (!qt.empty())
    {
        Trie* front = qt.front();
        qt.pop();
        
        for (int i = 0; i < MAX_D; ++i)
        {
            if (front->next[i])
            {
                Trie* pNode = front->fail;
                while (pNode && pNode->next[i] == NULL)
                {
                    pNode = pNode->fail;
                }
                front->next[i]->fail = pNode? pNode->next[i] : pRoot;
                if (front->next[i]->fail->flag == true)
                {
                    front->next[i]->flag = true;
                }
                
                qt.push(front->next[i]);
            }
            else
            {
                front->next[i] = front == pRoot? pRoot : front->fail->next[i];
            }
            
            if (front->next[i]->flag == false)
            {
                nMatrix[front->no][front->next[i]->no]++;
            }
        }
    }
    
    return nP;//节点总个数
}

void MultyMatrix(INT A[][MAX_P], INT B[][MAX_P], INT C[][MAX_P], int nSize)
{
    for (int i = 0; i < nSize; ++i)
    {
        for (int j = 0; j < nSize; ++j)
        {
            INT nSum = 0;
            for (int k = 0; k < nSize; ++k)
            {
                nSum = (nSum + A[i][k] * B[k][j]) % MOD;
            }
            C[i][j] = nSum;
        }
    }
}

void CopyMatrix(INT A[][MAX_P], INT B[][MAX_P], int nSize)
{
    for (int i = 0; i < nSize; ++i)
    {
        for (int j = 0; j < nSize; ++j)
        {
            A[i][j] = B[i][j];
        }
    }
}

void MatrixPower(INT M[][MAX_P], int nSize, INT nP)
{
    if (nP == 1)
    {
        CopyMatrix(A, M, nSize);
        return;
    }
    
    MatrixPower(M, nSize, nP / 2);
    MultyMatrix(A, A, B, nSize);
    if (nP % 2)
    {
        MultyMatrix(B, M, A, nSize);
    }
    else
    {
        CopyMatrix(A, B, nSize);
    }
}

int main()
{
    INT nM, nN;
    
    InitIdx();
    while (scanf("%I64d%I64d", &nM, &nN) == 2)
    {
        InitTrie(pRoot);
        while (nM--)
        {
            scanf("%s", szPat);
            Insert(szPat);
        }
        int nSize = BuildAC(pRoot);
        
        MatrixPower(nMatrix, nSize, nN);
        INT nAns = 0;
        for (int i = 0; i < nSize; ++i)
        {
            nAns = (nAns + A[0][i]) % MOD;
        }
        printf("%I64d\n", nAns % MOD);
    }
    
    return 0;
}
   
   

posted on 2012-10-18 09:46 yx 阅读(1201) 评论(0)  编辑 收藏 引用 所属分类: 字符串


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理


<2012年10月>
30123456
78910111213
14151617181920
21222324252627
28293031123
45678910

导航

统计

公告

常用链接

留言簿(3)

随笔分类

随笔档案

me

好友

同学

网友

搜索

最新评论

阅读排行榜

评论排行榜