《编程之美》读书笔记:1.3 一摞烙饼的排序
问题:
星期五的晚上,一帮同事在希格玛大厦附近的“硬盘酒吧”多喝了几杯。程序员多喝了几杯之后谈什么呢?自然是算法问题。有个同事说:“我以前在餐馆打工,顾客经常点非常多的烙饼。店里的饼大小不一,我习惯在到达顾客饭桌前,把一摞饼按照大小次序摆好——小的在上面,大的在下面。由于我一只手托着盘子,只好用另一只手,一次抓住最上面的几块饼,把它们上下颠倒个个儿,反复几次之后,这摞烙饼就排好序了。我后来想,这实际上是个有趣的排序问题:假设有n块大小不一的烙饼,那最少要翻几次,才能达到最后大小有序的结果呢?”
你能否写出一个程序,对于n块大小不一的烙饼,输出最优化的翻饼过程呢?
n个烙饼经过翻转后的所有状态可组成一棵树。寻找翻转最少次数,相当于在树中搜索层次最低的某个节点。
由于每层的节点数呈几何数量级增长,在n较大时,使用广度优先遍历树,可能没有足够的内存来保存中间结果(考虑到每层的两个节点,可以通过旋转,移位等操作互相转换,也许每层的状态可以用一个函数来生成,这时可以采用广度优先方法。),因而采用深度优先。但这棵树是无限深的,必须限定搜索的深度(即最少翻转次数的上限值),当深度达到该值时不再继续往下搜索。最少翻转次数,必然小等于任何一种翻转方案所需的翻转次数,因而只要构造出一种方案,取其翻转次数即可做为其初始值。最简单的翻转方案就是:对最大的未就位的烙饼,将其翻转,再找到最终结果中其所在的位置,翻转一次使其就位。因此,对编号在n-1和2之间的烙饼,最多翻转了2*(n-2)次,剩下0和1号烙饼最多翻转1次,因而最少翻转次数的上限值是:2*(n-2)+1=2*n-3(从网上可搜索到对该上限值最新研究结果:上限值为18/11*n),当然,最好还是直接计算出采用这种方案的翻转次数做为初始值。
减少遍历次数:
1 减小“最少翻转次数上限值”的初始值,采用前面提到的翻转方案,取其翻转次数为初始值。对书中的例子{3,2,1,6,5,4,9,8,7,0},初始值可以取10。
2 避免出现已处理过的状态一定会减少遍历吗?答案是否定的,深度优先遍历,必须遍历完一个子树,才能遍历下一个子树,如果一个解在某层比较靠后位置,若不允许处理已出现过的状态时,可能要经过很多次搜索,才能找到这个解,但允许处理已出现过的状态时,可能会很快找到这个解,并减小“最少翻转次数的上限值”,使更多的分支能被剪掉,从而减少遍历。比如说,两个子树A、B,搜索子树A,100次后可得到一个解对应翻转次数20,搜索子树B,20次后可得到翻转次数为10的解,不允许处理已出现过的状态,就会花100次遍历完子树A后,才开始遍历B,但允许翻转回上一次状态,搜索会在A、B间交叉进行,就可能只要70次找到子树B的那个解(翻转次数为10+2=12),此时,翻转次数比较少,能减少更多的搜索,搜索次数明显减少。以书中的{3,2,1,6,5,4,9,8,7,0}为例,按程序(1.3_pancake.cpp),不允许翻转回上次状态时需搜索195次,而允许翻转回上次状态时只要搜索116次。
3 如果最后的几个烙饼已经就位,只须考虑前面的几个烙饼。对状态(0,1,3,4,2,5,6),编号为5和6的烙饼已经就位,只须考虑前5个烙饼,即状态(0,1,3,4,2)。如果一个最优解,从某次翻转开始移动了一个已经就位的烙饼,且该烙饼后的所有烙饼都已经就位,那么,对这个解法,从这次翻转开始得到的一系列状态,从中移除这个烙饼,得到新的状态,可以设计出一个新的解法对应这系列新的状态。该解法所用的翻转次数不会比原来的多。
4 估计每个状态还需要翻转的最少次数(即下限值),加上当前的深度,如果大等于上限值,就无需继续遍历。这个下限值可以这样确定:从最后一个位置开始,往前找到第一个与最终结果位置不同的烙饼编号(也就是说排除最后几个已经就位的烙饼),从该位置到第一个位置,计算相邻的烙饼的编号不连续的次数,再加上1。每次翻转最多只能使不连续的次数减少1,但很多人会忽略掉这个情况:最大的烙饼没有就位时,必然需要一次翻转使其就位,而这次翻转却不改变不连续次数。(可以在最后面增加一个更大的烙饼,使这次翻转可以改变不连续数。)如:对状态(0,1,3,4,2,5,6)等同于状态(0,1,3,4,2),由于1、3和4、2不连续,因而下限值为2+1=3。下限值也可以这样确定:在最后面增加一个已经已就位的最大的烙饼,然后再计算不连续数。如:(0,1,3,4,2),可以看作(0,1,3,4,2,5),1和3 、4和2 、2和5这三个不连续,下限值为3。
5多数情况下,翻转次数的上限值越大,搜索次数就越多。可以采用贪心算法,通过调整每次所有可能翻转的优先顺序,尽快找到一个解,从而减少搜索次数。比如,优先搜索使“下限值”减少的翻转,其次是使“下限值”不变的翻转,最后才搜索使“下限值”增加的翻转。对“下限值”不变的翻转,还可以根据其下次的翻转对“下限值”的影响,再重新排序。由于进行了优先排序,翻转回上一次状态能减少搜索次数的可能性得到进一步降低。
6 其它剪枝方法:
假设第m次翻转时,“上限值”为min_swap。
如果在某个位置的翻转得到一个解(即翻转次数为m),则其它位置可以不搜索(因为在其它位置的翻转,能得到的最少翻转次数必然大等m)。
如果在某个位置的翻转后,“下限值”为k,并且 k+m>=min_swap,则对所有的使新“下限值”kk大等于k的翻转,都有 kk+m>=min_swap,因而都可以不搜索。
另外,由于翻转时,只有两个位置的改变才对“下限值”有影响,因而可以记录每个状态的“下限值”,翻转时,通过几次比较,就可以确定新状态的“下限值”。(判断不连续次数时,最好写成 -1<=x && x<=1, 而不是x==1 || x==-1。对于 int x; a<=x && x<=b,编译器可以将其优化为 unsigned (x-a) <= b-a。)
结果:
对书上的例子{3,2,1,6,5,4,9,8,7,0}:
|
翻转回上次状态
|
搜索函数被调用次数
|
翻转函数被调用次数
|
1.3_pancake_2
|
不允许
|
29
|
66
|
1.3_pancake_2
|
允许
|
33
|
74
|
1.3_pancake_1
|
不允许
|
195
|
398
|
1.3_pancake_1
|
允许
|
116
|
240
|
(这个例子比较特殊,代码1.3_pancake_2.cpp(与1.3_pancake_1.cpp的最主要区别在于,增加了对翻转优先顺序的判断,代码下载),在不允许翻转回上次状态、取min_swap的初始值为2*10-2=18时,调用搜索函数29次,翻转函数56次)。
另外,对1.3_pancake_2.cpp的第148行做个简单的改动:
for (int pos=1, last_swap=cake_swap[step++]; pos<size; ++pos){
改为:
for (int pos=size-1, last_swap=cake_swap[step++]; pos>0; ++pos){
只是改变了搜索顺序,但却极大提升了搜索效率。对书上的例子,搜索次数进一步降到11次(实际上前六次搜索找到了一个解,后而的几次用于判断这个解是是最优解)。遍历所有可能的排列求第1个……第10个烙饼数所用的总时间,也由原来的38秒降到21秒。
1.3_pancake_f
1//1.3_pancake_f.cpp by flyingheart # qq.com
2#include<iostream>
3#include<fstream>
4#include<vector>
5#include<algorithm>
6#include<ctime>
7using namespace std;
8
9class Pancake{
10 public:
11 Pancake() {}
12 void print() const;
13 void process(); //显示最优解的翻转过程
14 int run(const int cake_arr[], int size, bool show=true);
15 void calc_range(int na, int nb);
16
17 private:
18 Pancake(const Pancake&);
19 Pancake& operator=(const Pancake&);
20 inline bool init(const int cake_arr[], int& size);
21 void search_cake(int size, int step, int least_swap_old);
22 void reverse_cake(int index) { //翻转0到index间的烙饼
23 ++count_reverse;
24 std::reverse(&cake[0], &cake[index + 1]);
25 }
26
27 bool next_search_cake(int pos, int size, int step, int least_swap)
28 {
29 if (least_swap + step >= get_min_swap()) return true;
30 cake_swap[step] = pos;
31 reverse_cake(pos);
32 search_cake(size,step,least_swap);
33 reverse_cake(pos);
34 return false;
35 }
36
37 int get_min_swap() const { return result.size();}
38
39 void output(int i, const std::string& sep, int width) const {
40 cout.width(width);
41 cout << i << sep;
42 }
43
44 void output(const std::string& sep, int width) const {
45 cout.width(width);
46 cout << sep;
47 }
48
49 vector<int> cake_old; //要处理的原烙饼数组
50 vector<int> cake; //当前各个烙饼的状态
51 vector<int> result; //最优解中,每次翻转的烙饼位置
52 vector<int> cake_swap; //每次翻转的烙饼位置
53 vector<int> cake_order; //第step+1次翻转时,翻转位置的优先顺序
54 int min_swap_init; //最优解的翻转次数初始值
55 int count_search; //search_cake被调用次数
56 int count_reverse; //reverse_cake被调用次数
57};
58
59
60void Pancake::print() const
61{
62 int min_swap = get_min_swap();
63 if (min_swap == 0) return;
64 cout << "minimal_swap initial: " << min_swap_init
65 << " final: "<< min_swap
66 << "\nsearch/reverse function was called: " << count_search
67 << "/" << count_reverse << " times\nsolution: ";
68 for (int i = 0; i < min_swap; ++i) cout << result[i] << " ";
69 cout<< "\n\n";
70}
71
72void Pancake::process()
73{
74 int min_swap = get_min_swap();
75 if (min_swap == 0) return;
76 cake.assign(cake_old.begin(), cake_old.end());
77 int cake_size = cake_old.size();
78 const int width = 3, width2 = 2 * width + 3;
79 output("No.", width2);
80 for (int j = 0; j < cake_size; ++j) output(j," ",width);
81 cout << "\n";
82 output("old:", width2);
83
84 for (int j = 0; j < cake_size; ++j) output(cake[j]," ",width);
85 cout << "\n";
86
87 for (int i = 0; i < min_swap; ++i){
88 reverse_cake(result[i]);
89 output(i + 1," ",width);
90 output(result[i],": ",width);
91 for (int j = 0; j < cake_size; ++j) output(cake[j]," ",width);
92 cout << "\n";
93 }
94 cout << "\n\n";
95}
96
97bool Pancake::init(const int cake_arr[], int& size)
98{
99 result.clear();
100 if (cake_arr == NULL) return false;
101 cake_swap.resize(size * 2);
102 cake_order.resize(size * size * 2);
103 count_search = 0;
104 count_reverse = 0;
105 cake_old.assign(cake_arr,cake_arr + size);
106 //去除末尾已就位的烙饼,修正烙饼数组大小。
107 while (size > 1 && size - 1 == cake_arr[size - 1]) --size;
108 if (size <= 1) return false;
109
110 cake.assign(cake_arr,cake_arr + size);
111 for (int j = size - 1; ;) { //计算一个解作为min_swap初始值。
112 while(j > 0 && j == cake[j]) --j;
113 if (j <= 0) break;
114 int i = j;
115 while (i >= 0 && cake[i] != j) --i;
116 if (i != 0) {
117 reverse_cake(i);
118 result.push_back(i);
119 }
120 reverse_cake(j);
121 result.push_back(j);
122 --j;
123 }
124 cake.assign(cake_arr,cake_arr + size); //恢复原来的数组
125 cake.push_back(size); //多放一个烙饼,避免后面的边界判断
126 cake_swap[0] = 0; //假设第0步翻转的烙饼编号为0
127 min_swap_init= get_min_swap();
128 return true;
129}
130
131int Pancake::run(const int cake_arr[], int size, bool show)
132{
133 if (! init(cake_arr, size)) return 0;
134 int least_swap = 0;
135 //size = cake.size() - 1;
136 for (int i = 0; i < size; ++i)
137 if (cake[i] - cake[i + 1] + 1u > 2) ++least_swap;
138 if (get_min_swap() != least_swap) search_cake(size, 0, least_swap);
139 if (show) print();
140 return get_min_swap();
141}
142
143void Pancake::search_cake(int size, int step, int least_swap_old)
144{
145 ++count_search;
146 while (size > 1 && size - 1 == (int)cake[size - 1]) --size; //去除末尾已就位的烙饼
147 int *first = &cake_order[step * cake.size()];
148 int *last = first + size;
149 int *low = first, *high = first + size;
150
151 for (int pos = size - 1, last_swap = cake_swap[step++]; pos > 0; --pos){
152 if (pos == last_swap) continue;
153 int least_swap = least_swap_old ;
154 if (cake[pos] - cake[pos + 1] + 1u <= 2) ++least_swap;
155 if (cake[0] - cake[pos + 1] + 1u <= 2) --least_swap;
156
157 if (least_swap + step >= get_min_swap()) continue;
158 if (least_swap == 0) {
159 cake_swap[step] = pos;
160 result.assign(&cake_swap[1], &cake_swap[step + 1]);
161 return;
162 }
163
164 //根据least_swap值大小,分别保存pos值,并先处理使least_swap_old减小1的翻转
165 if (least_swap == least_swap_old) *low++ =pos;
166 else if (least_swap > least_swap_old) *--high =pos;
167 else next_search_cake(pos, size, step, least_swap);
168 }
169
170 //再处理使least_swap_old不变的翻转
171 for(int *p = first; p < low; p++)
172 if (next_search_cake(*p, size, step, least_swap_old)) return;
173
174 //最后处理使least_swap_old增加1的翻转
175 for(int *p = high; p < last; p++)
176 if (next_search_cake(*p, size, step, least_swap_old + 1)) return;
177}
178
179void Pancake::calc_range(int na, int nb)
180{
181 if (na > nb || na <= 0) return;
182 clock_t ta = clock();
183 static std::vector<int> arr;
184 arr.resize(nb);
185 unsigned long long total_search = 0;
186 unsigned long long total_reverse = 0;
187 for (int j = na; j <= nb; ++j) {
188 for (int i = 0; i < j; ++i) arr[i] = i;
189 int max = 0;
190 unsigned long long count_s = 0;
191 unsigned long long count_r = 0;
192 clock_t tb = clock();
193 while (std::next_permutation(&arr[0], &arr[j])) {
194 int tmp = run(&arr[0],j,0);
195 if (tmp > max) max = tmp;
196 count_s += count_search;
197 count_r += count_reverse;
198 }
199 total_search += count_s;
200 total_reverse += count_r;
201 output(j, " ",2);
202 output(max," time: ",3);
203 output(clock() - tb," ms ",8);
204 cout << " search/reverse: " << count_s << "/" << count_r << "\n";
205 }
206 cout << " total search/reverse: " << total_search
207 << "/" << total_reverse << "\n"
208 << "time : " << clock() - ta << " ms\n";
209}
210
211int main()
212{
213 int aa[10]={ 3,2,1,6,5,4,9,8,7,0};
214 //int ab[10]={ 4,8,3,1,5,2,9,6,7,0};
215 // int ac[]={1,0, 4, 3, 2};
216 Pancake cake;
217 cake.run(aa,10);
218 cake.process();
219 //cake.run(ab,10);
220 //cake.process();
221 //cake.run(ac,sizeof(ac)/sizeof(ac[0]));
222 //cake.process();
223 cake.calc_range(1,9);
224}
225
226
补充:
在网上下了《编程之美》“第6刷”的源代码,结果在编译时存在以下问题:
1 Assert 应该是 assert
2 m_arrSwap 未被定义,应该改为m_SwapArray
3 Init函数两个for循环,后一个没定义变量i,应该将i 改为 int i
另外,每运行一次Run函数,就会调用Init函数,就会申请新的内存,但却没有释放原来的内存,会造成内存泄漏。
书上程序的低效主要是由于进行剪枝判断时,没有考虑好边界条件,可进行如下修改:
1 if(step + nEstimate > m_nMaxSwap) > 改为 >=。
2 判断下界时,如果最大的烙饼不在最后一个位置,则要多翻转一次,因而在LowerBound函数return ret; 前插入一行:
if (pCakeArray[nCakeCnt-1] != nCakeCnt-1) ret++; 。
3 n个烙饼,翻转最大的n-2烙饼最多需要2*(n-2)次,剩下的2个最多1次,因而上限值为2*n-3,因此,m_nMaxSwap初始值可以取2*n-3+1=2*n-2,这样每步与m_nMaxSwap的判断就可以取大等于号。
4 采用书上提到的确定“上限值”的方法,直接构建一个初始解,取其翻转次数为m_nMaxSwap的初始值。
1和2任改一处,都能使搜索次数从172126降到两万多,两处都改,搜索次数降到3475。若再改动第3处,搜索次数降到2989;若采用4的方法(此时初始值为10),搜索次数可降到1045。