/*
问题描述:有三个柱子A, B, C. A柱子上叠放有n个盘子,每个盘子都比它下面的盘子要小一点,
可以从上到下用1, 2, ..., n编号。要求借助柱子B,把柱子A上的所有的盘子移动到柱子C上。
移动条件为:1、一次只能移一个盘子;
2、移动过程中大盘子不能放在小盘子上,只能小盘子放在大盘子上。
*/
/*
递归的算法相信大多数人都知道,非递归算法也有出现过。
如:摘自http://www.programfan.com/club/old_showbbs.asp?id=96548
作者:qq590240
#include <iostream>
#include <stdlib.h>
#ifdef _WIN32
using namespace std;
#endif
static void hanoi(int height)
{
int fromPole, toPole, Disk;
int *BitStr = new int[height],
*Hold = new int[height];
char Place[] = {'A', 'B', 'C'};
int i, j, temp;
for (i=0; i < height; i++)
{
BitStr[i] = 0;
Hold[i] = 1;
}
temp = 3 - (height % 2);
int TotalMoves = (1 << height) - 1;
for (i=1; i <= TotalMoves; i++)
{
for (j=0 ; BitStr[j] != 0; j++)
{
BitStr[j] = 0;
}
BitStr[j] = 1;
Disk = j+1;
if (Disk == 1)
{
fromPole = Hold[0];
toPole = 6 - fromPole - temp;
temp = fromPole;
}
else
{
fromPole = Hold[Disk-1];
toPole = 6 - Hold[0] - Hold[Disk-1];
}
cout << "Move disk " << Disk << " from " << Place[fromPole-1]
<< " to " << Place[toPole-1] << endl;
Hold[Disk-1] = toPole;
}
}
int main(int argc, char *argv[])
{
cout << "Towers of Hanoi: " << endl
<< "moving a tower of n disks from pole A to pole B by using pole C" << endl;
cout << "Input the height of the original tower: ";
int height;
cin >> height;
hanoi(height);
system("PAUSE");
return EXIT_SUCCESS;
}
////////////////////////////////////////////////////////////
我在这里根据《数学营养菜》(谈祥柏 著)提供的一种方法,编了一个程序来实现。
*/
/*
算法介绍:
首先容易证明,当盘子的个数为n时,移动的次数应等于2^n - 1。
一位美国学者发现一种出人意料的方法,只要轮流进行两步操作就可以了。
首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上。
根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;
若n为奇数,按顺时针方向依次摆放 A C B。
(1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;
若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。
(2)接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。
即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘
这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。
(3)反复进行(1)(2)操作,最后就能按规定完成汉诺塔的移动。
*/
#include <iostream>
using namespace std;
const int MAX = 64; //圆盘的个数最多为64
struct st{ //用来表示每根柱子的信息
int s[MAX]; //柱子上的圆盘存储情况
int top; //栈顶,用来最上面的圆盘
char name; //柱子的名字,可以是A,B,C中的一个
int Top()//取栈顶元素
{
return s[top];
}
int Pop()//出栈
{
return s[top--];
}
void Push(int x)//入栈
{
s[++top] = x;
}
} ;
long Pow(int x, int y); //计算x^y
void Creat(st ta[], int n); //给结构数组设置初值
void Hannuota(st ta[], long max); //移动汉诺塔的主要函数
int main(void)
{
int n;
cin >> n; //输入圆盘的个数
st ta[3]; //三根柱子的信息用结构数组存储
Creat(ta, n); //给结构数组设置初值
long max = Pow(2, n) - 1;//动的次数应等于2^n - 1
Hannuota(ta, max);//移动汉诺塔的主要函数
system("pause");
return 0;
}
void Creat(st ta[], int n)
{
ta[0].name = 'A';
ta[0].top = n-1;
for (int i=0; i<n; i++) //把所有的圆盘按从大到小的顺序放在柱子A上
ta[0].s[i] = n - i;
ta[1].top = ta[2].top = 0;//柱子B,C上开始没有没有圆盘
for (int i=0; i<n; i++)
ta[1].s[i] = ta[2].s[i] = 0;
if (n%2 == 0) //若n为偶数,按顺时针方向依次摆放 A B C
{
ta[1].name = 'B';
ta[2].name = 'C';
}
else //若n为奇数,按顺时针方向依次摆放 A C B
{
ta[1].name = 'C';
ta[2].name = 'B';
}
}
long Pow(int x, int y)
{
long sum = 1;
for (int i=0; i<y; i++)
sum *= x;
return sum;
}
void Hannuota(st ta[], long max)
{
int k = 0; //累计移动的次数
int i = 0;
int ch;
while (k < max)
{
//按顺时针方向把圆盘1从现在的柱子移动到下一根柱子
ch = ta[i%3].Pop();
ta[(i+1)%3].Push(ch);
cout << ++k << ": " << "Move disk " << ch << " from " << ta[i%3].name << " to " << ta[(i+1)%3].name << endl;
i++;
//把另外两根柱子上可以移动的圆盘移动到新的柱子上
if (k < max)
{ //把非空柱子上的圆盘移动到空柱子上,当两根柱子都为空时,移动较小的圆盘
if (ta[(i+1)%3].Top() == 0 || ta[(i-1)%3].Top() > 0 && ta[(i+1)%3].Top() > ta[(i-1)%3].Top())
{
ch = ta[(i-1)%3].Pop();
ta[(i+1)%3].Push(ch);
cout << ++k << ": " << "Move disk " << ch << " from " << ta[(i-1)%3].name << " to " << ta[(i+1)%3].name << endl;
}
else
{
ch = ta[(i+1)%3].Pop();
ta[(i-1)%3].Push(ch);
cout << ++k << ": " << "Move disk " << ch << " from " << ta[(i+1)%3].name << " to " << ta[(i-1)%3].name << endl;
}
}
}
}