迭代公式具体为Xn+1=(Xn+a/xn)/2 (n=0,1,2,3….;X0=a/2),这是我的一次作业。
#include<iostream.h>
#include<math.h>
void main()
{
float a,m,n;
cout<<"please input a positive integer"<<endl;
cout<<"a="<<endl;
cin>>a;
n=a/2;
m=(n+a/n)/2;
while(fabs(n-m)>1e-6)
{n=m;
m=(n+a/n)/2;
}
cout<<"The square root of a is"<<m<<endl;
}
呵呵,关于牛顿迭代法,众人研究甚多。
TIP1:
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。
设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。
解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
TIP2:
相关:迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
例如,当我们要解决一个相关递增问题时,利用计算机的优势可以设计出相关的程序来快速求得解。
如题, 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只?
呵呵,又是兔子问题,这是个思路比较清楚,解法比较简单的一道题!
这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u1 ,第2个月时兔子的只数为u2,第3个月时兔子的只数为u3,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有
U1=1,U 2=U1+U1×1=2,U3=U2+U2×1=4,……
根据这个规律,可以归纳出下面的递推公式:
U n = U (n-1)× 2 (n ≥ 2) ,对应 Un 和 U n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:
y=x*2
x=y
让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。