随笔-141  评论-9  文章-3  trackbacks-0
用dist[x1][y1][x2][y2]表示点(x1,y1)到点(x2,y2)的最短距离, 用BFS枚举求得.

枚举所有集合点,

先考虑王和马分别到集合点的距离和.

再考虑王走1步, 枚举其中一只马到去接王, 再到集合点, 其他马各自到集合点的距离.

再考虑王走2步的情形.

/*
ID: lorelei
TASK: camelot
LANG: C++
*/


#include 
<fstream>
#include 
<memory.h>
#include 
<queue>
#include 
<cmath>

using namespace std;

const int N = 40;
const int INF = 9999999;
const int knightx[9]={0,-2,-1,12,-2,-1,1,2}
const int knighty[9]={0,-1,-2,-2,-1,1,22,1}
const int kingx1[9]={0,-1,10,0,-1,1,-1,1 };
const int kingy1[9]={00,0,-1,1,-1,-1,1,1};
const int kingx2[16]={0,-1,-2,-2,-2,-2,-2,-1,0,1,2,2,2,2,2,1};
const int kingy2[16]={-2,-2,-2,-1,0,1,2,2,2,2,2,1,0,-1,-2,-2};

typedef 
struct{
    
int x,y;
}
Point;

int R,C;
int num;

int dist[N][N][N][N];
bool visited[N][N];

Point knights[
1000];
Point king;

void BFS(int x, int y){
    
int i,j;

    
for(i=1; i<=R; ++i)
        
for(j=1; j<=C; ++j){
            dist[x][y][i][j]
=INF;
            visited[i][j]
=false;
        }


    queue
<Point> Q;

    Point temp;
    temp.x 
= x;
    temp.y 
= y;
    dist[x][y][x][y]
=0;
    visited[x][y]
=true;
    
    Q.push(temp);
    
while(!Q.empty()){

        temp 
= Q.front();
        Q.pop();
        
int tx = temp.x; 
        
int ty = temp.y;
        
for(i=1; i<=8++i){
            
int dx = tx + knightx[i];
            
int dy = ty + knighty[i];
            
if(dx>=1&&dx<=R&&dy>=1&&dy<=C&&!visited[dx][dy]){
                visited[dx][dy] 
= true;
                dist[x][y][dx][dy] 
= dist[x][y][tx][ty]+1;
                temp.x 
= dx;
                temp.y 
= dy;
                Q.push(temp);
            }

        }

    }

}



inline 
int max(int a, int b){
    
return a>b?a:b;
}


int main(){
    
int i,j,k,t,x;
    
char ch;

    ifstream fin(
"camelot.in");
    ofstream fout(
"camelot.out");

    fin
>>R>>C;
    fin
>>ch>>x;

    king.x 
= x;
    king.y 
= ch-'A'+1;

    
while(fin>>ch){
        num
++;
        fin
>>x;
        knights[num].x 
= x;
        knights[num].y 
= ch-'A'+1;
    }


    
//sovle

    
for(i=1; i<=R; ++i)
        
for(j=1; j<=C; ++j)
            BFS(i,j);

    
int ans = INF, sum;
    
for(i=1; i<=R; ++i)
        
for(j=1; j<=C; ++j){
            sum 
= 0;

            
//----------------------------------------------
            for(k=1; k<=num; ++k)
                sum 
+=dist[i][j][knights[k].x][knights[k].y];

            sum
+=max( abs(king.x-i),abs(king.y-j) );
            
//-----------------------------------------------

            
int min = INF;
            
for( t=0; t<=8++t){
                
int tx = king.x + kingx1[t];
                
int ty = king.y + kingy1[t];
                
if(tx>=1 && tx<=&& ty>=1 && ty<= C){
                    
                    
for(k=1; k<=num; ++k){
                        
int cur = dist[knights[k].x][knights[k].y][tx][ty] + dist[tx][ty][i][j]  - 
                                  (dist[i][j][knights[k].x][knights[k].y] 
+ max( abs(king.x-i),abs(king.y-j) ) ); 

                        
if(t!=0)
                            cur
++;

                        
if(cur<0 && cur<min)
                            min 
= cur;
                    }

                }

            }


            
for( t=0; t<16++t){
                
int tx = king.x + kingx2[t];
                
int ty = king.y + kingy2[t];
                
if(tx>=1 && tx<=&& ty>=1 && ty<= C){
                    
                    
for(k=1; k<=num; ++k){
                        
int cur = dist[knights[k].x][knights[k].y][tx][ty] + dist[tx][ty][i][j] +2  - 
                                  (dist[i][j][knights[k].x][knights[k].y] 
+ max( abs(king.x-i),abs(king.y-j) ) ); 


                        
if(cur<0 && cur<min)
                            min 
= cur;
                    }

                }

            }


            
if(min!=INF&&min<0)
                sum 
+= min;

            
if(sum<ans)
                ans 
= sum;
        }


    
if(R==0 || C==0)
        fout
<<0<<endl;
    
else
        fout
<<ans<<endl;
    
    
return 0;
}

posted on 2011-01-13 00:31 小阮 阅读(693) 评论(0)  编辑 收藏 引用 所属分类: USACO

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理