Nim取子游戏是由两个人面对若干堆硬币(或石子)进行的游戏。设有k>=1堆硬币,各堆分别含有N1,N2,……NK枚硬币。游戏的目的就是选择最后剩下的硬币。游戏法则如下:
1.两个游戏人交替进行游戏(游戏人I和游戏人II);
2.当轮到每个游戏人取子时,选择这些堆中的一堆,并从所选的堆中取走至少一枚硬币(游戏人可以取走他所选堆中的全部硬币);
3.当所有的堆都变成空堆时,最后取子的游戏人即为胜者。
这个游戏中的变量是堆数k和各堆的硬币数N1,N2,……Nk。对应的组合问题是,确定游戏人I获胜还是游戏人II获胜以及两个游戏人应该如何取子才能保证自己获胜(获胜策略)。
为了进一步理解Nim取子游戏,我们考查某些特殊情况。如果游戏开始时只有一堆硬币,游戏人I则通过取走所有的硬币而获胜。现在设有2堆硬币,且硬币数量分别为N1和N2。游戏人取得胜利并不在于N1和N2的值具体是多少,而是取决于它们是否相等。设N1!=N2,游戏人I从大堆中取走的硬币使得两堆硬币数量相等,于是,游戏人I以后每次取子的数量与游戏人II相等而最终获胜。但是如果N1= N2,则:游戏人II只要按着游戏人I取子的数量在另一堆中取相等数量的硬币,最终获胜者将会是游戏人II。这样,两堆的取子获胜策略就已经找到了。
现在我们如何从两堆的取子策略扩展到任意堆数中呢?
首先来回忆一下,每个正整数都有对应的一个二进制数,例如:57(10) à 111001(2) ,即:57(10)=25+24+23+20。于是,我们可以认为每一堆硬币数由2的幂数的子堆组成。这样,含有57枚硬币大堆就能看成是分别由数量为25、24、23、20的各个子堆组成。
现在考虑各大堆大小分别为N1,N2,……Nk的一般的Nim取子游戏。将每一个数Ni表示为其二进制数(数的位数相等,不等时在前面补0):
N1 = as…a1a0
N2 = bs…b1b0
……
Nk = ms…m1m0
如果每一种大小的子堆的个数都是偶数,我们就称Nim取子游戏是平衡的,而对应位相加是偶数的称为平衡位,否则称为非平衡位。因此,Nim取子游戏是平衡的,当且仅当:
as + bs + … + ms 是偶数
……
a1 + b1 + … + m1 是偶数
a0 + b0 + … + m0是偶数
于是,我们就能得出获胜策略:
游戏人I能够在非平衡取子游戏中取胜,而游戏人II能够在平衡的取子游戏中取胜。
我们以一个两堆硬币的Nim取子游戏作为试验。设游戏开始时游戏处于非平衡状态。这样,游戏人I就能通过一种取子方式使得他取子后留给游戏人II的是一个平衡状态下的游戏,接着无论游戏人II如何取子,再留给游戏人I的一定是一个非平衡状态游戏,如此反复进行,当游戏人II在最后一次平衡状态下取子后,游戏人I便能一次性取走所有的硬币而获胜。而如果游戏开始时游戏牌平衡状态,那根据上述方式取子,最终游戏人II能获胜。
下面应用此获胜策略来考虑4-堆的Nim取子游戏。其中各堆的大小分别为7,9,12,15枚硬币。用二进制表示各数分别为:0111,1001,1100和1111。于是可得到如下一表:
|
23 = 8
|
22 = 4
|
21 = 2
|
20 = 1
|
大小为7的堆
|
0
|
1
|
1
|
1
|
大小为9的堆
|
1
|
0
|
0
|
1
|
大小为12的堆
|
1
|
1
|
0
|
0
|
大小为15的堆
|
1
|
1
|
1
|
1
|
由Nim取子游戏的平衡条件可知,此游戏是一个非平衡状态的取子游戏,因此,游戏人I在按获胜策略进行取子游戏下将一定能够取得最终的胜利。具体做法有多种,游戏人I可以从大小为12的堆中取走11枚硬币,使得游戏达到平衡(如下表),
|
23 = 8
|
22 = 4
|
21 = 2
|
20 = 1
|
大小为7的堆
|
0
|
1
|
1
|
1
|
大小为9的堆
|
1
|
0
|
0
|
1
|
大小为12的堆
|
0
|
0
|
0
|
1
|
大小为15的堆
|
1
|
1
|
1
|
1
|
之后,无论游戏人II如何取子,游戏人I在取子后仍使得游戏达到平衡。
同样的道理,游戏人I也可以选择大小为9的堆并取走5枚硬币而剩下4枚,或者,游戏人I从大小为15的堆中取走13枚而留下2枚。
归根结底,Nim取子游戏的关键在于游戏开始时游戏处于何种状态(平衡或非平衡)和第一个游戏人是否能够按照取子游戏的获胜策略来进行游戏。
posted on 2007-12-15 21:26
R2 阅读(844)
评论(0) 编辑 收藏 引用 所属分类:
Pure Theory