posts - 7,comments - 3,trackbacks - 0

Transfer water

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 1770    Accepted Submission(s): 650


Problem Description
XiaoA lives in a village. Last year flood rained the village. So they decide to move the whole village to the mountain nearby this year. There is no spring in the mountain, so each household could only dig a well or build a water line from other household. If the household decide to dig a well, the money for the well is the height of their house multiplies X dollar per meter. If the household decide to build a water line from other household, and if the height of which supply water is not lower than the one which get water, the money of one water line is the Manhattan distance of the two households multiplies Y dollar per meter. Or if the height of which supply water is lower than the one which get water, a water pump is needed except the water line. Z dollar should be paid for one water pump. In addition,therelation of the households must be considered. Some households may do not allow some other households build a water line from there house. Now given the 3‐dimensional position (a, b, c) of every household the c of which means height, can you calculate the minimal money the whole village need so that every household has water, or tell the leader if it can’t be done.
 

Input
Multiple cases. 
First line of each case contains 4 integers n (1<=n<=1000), the number of the households, X (1<=X<=1000), Y (1<=Y<=1000), Z (1<=Z<=1000). 
Each of the next n lines contains 3 integers a, b, c means the position of the i‐th households, none of them will exceeded 1000. 
Then next n lines describe the relation between the households. The n+i+1‐th line describes the relation of the i‐th household. The line will begin with an integer k, and the next k integers are the household numbers that can build a water line from the i‐th household. 
If n=X=Y=Z=0, the input ends, and no output for that. 
 

Output
One integer in one line for each case, the minimal money the whole village need so that every household has water. If the plan does not exist, print “poor XiaoA” in one line. 
 

Sample Input
2 10 20 30 1 3 2 2 4 1 1 2 2 1 2 0 0 0 0
 

Sample Output
30
Hint
In 3‐dimensional space Manhattan distance of point A (x1, y1, z1) and B(x2, y2, z2) is |x2‐x1|+|y2‐y1|+|z2‐z1|.
 

Source
 

Recommend
lcy
 

今年大连赛区网络赛一道题.....我怎么一点印象也没有呢.....
一道赤裸的最小树形图,除了数据有点大而已.....
思路:因为没有根,所以虚拟一个根,所有点和这个根连线,权值是该点造井的价格,这样以这个根出发,构造出来的最小树形图就是最小的费用了。
代码:
#include <cstdio>
#include 
<cstring>
#include 
<cmath>
#include 
<iostream>
using namespace std;

const int maxn = 1100;
const int maxm = 1100000;
const int maxint = 0x3fffffff;

struct edge
{
    
int u, v, w;
    edge(){}
    edge(
int u1, int v1, int w1) : u(u1), v(v1), w(w1){}
} e[maxm];

int root, n, edgeNum, vis[maxn], pre[maxn], belong[maxn], in[maxn];
int a[maxn], b[maxn], c[maxn];
int Abs(int a)
{
    
return a > 0 ? a : -a;
}

int Dis(int i, int j)
{
    
return Abs(a[i] - a[j]) + Abs(b[i] - b[j]) + Abs(c[i] - c[j]);
}

int solve()
{
    
int i, j, k, num, sum = 0;
    n
++;
    
while (1)
    {
        
for (i = 0; i < n; ++i)
            
in[i] = maxint;
        
for (i = 0; i < edgeNum; ++i)
        {
            
if (in[e[i].v] > e[i].w && e[i].u != e[i].v)
            {
                pre[e[i].v] 
= e[i].u;
                
in[e[i].v] = e[i].w;
            }
        }

        memset(vis, 
-1sizeof(vis));
        memset(belong, 
-1sizeof(belong));
        
in[root] = 0;
        
for (num = 0, i = 0; i < n; ++i)
        {
            sum 
+= in[i];
            j 
= i;
            
while (vis[j] != i && belong[j] == -1 && j != root)
            {
                vis[j] 
= i;
                j 
= pre[j];
            }
            
if (vis[j] == i)
            {
                
for (k = pre[j]; k != j; k = pre[k])
                    belong[k] 
= num;
                belong[j] 
= num++;
            }
        }

        
if (!num) return sum;
        
for (i = 0; i < n; ++i)
            
if (belong[i] == -1)
                belong[i] 
= num++;

        
for (i = 0; i < edgeNum; ++i)
        {
            
int j = e[i].v;
            e[i].u 
= belong[e[i].u];
            e[i].v 
= belong[e[i].v];
            e[i].w 
-= in[j];
        }
        n 
= num;
        root 
= belong[root];
    }
    
return sum;
}

int main()
{
    
int x, y, z, i, j, k, ii, d;
    
while (scanf("%d%d%d%d"&n, &x, &y, &z) != EOF)
    {
        
if (!&& !&& !&& !z) break;
        
for (edgeNum = 0, i = 1; i <= n; ++i)
        {
            scanf(
"%d%d%d"&a[i], &b[i], &c[i]);
            e[edgeNum
++= edge(0, i, c[i] * x);
        }
        
for (i = 1; i <= n; ++i)
        {
            scanf(
"%d"&k);
            
while (k--)
            {
                scanf(
"%d"&ii);
                
if (i == ii) continue;
                d 
= Dis(i, ii);
                
if (c[i] >= c[ii])
                    e[edgeNum
++= edge(i, ii, d * y);
                
else
                    e[edgeNum
++= edge(i, ii, d * y + z);
            }
        }

        root 
= 0;
        printf(
"%d\n", solve());
    }
    
return 0;
}
posted on 2011-10-15 22:20 LLawliet 阅读(226) 评论(0)  编辑 收藏 引用 所属分类: 图论

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理