|
Posted on 2008-10-21 08:13 lzmagic 阅读(2390) 评论(7) 编辑 收藏 引用
1/**//** 2 * 程序:加减乘除24 3 * 输入:四个1到13整数(输入四个0结束) 1/**//** 2 * 程序:加减乘除24 3 * 输入:四个1到13整数(输入四个0结束) 4 * 输出:加减乘除得到24的式子,否则输出"None." 5 * 思路:我们希望构造出满足形如 a[0] opr[0] a[1] opr[1] a[2] opr[2] a[3] = 24 的式子,采用回溯的思路,将右式不断缩小, 6 * 最后只剩下a[0],然后再判断左式是否与它相等,相等的话就结束搜索,输出结果。 7 * 注:1)opr[i]指的是右式(不妨设为X)和a[i]的操作类型,一共有6种: 8 * ADD: X + a[i] (= a[i] + X,算为同一种) 9 * SUB_L: a[i] - X 10 * SUB_R: X - a[i] 11 * MUL: X * a[i] (= a[i] * X,算为同一种) 12 * DIV_L: a[i] / X 13 * DIV_R: X / a[i] 14 * 2)回溯中把右式分解出分子(u)和分母(d)主要是考虑一些特殊情况,例如3, 3, 7, 7和4, 4, 5, 5 15 * 作者:lzmagic 16 */ 17 18#include <iostream> 19using namespace std; 20 21enum OPR { ADD, SUB_L, SUB_R, MUL, DIV_L, DIV_R }; 22 23int a[4]; // 操作数的数组 24OPR opr[3]; // 操作符的数组 25int top; // 当前要处理的操作符的下标 26bool ok; // 是否成功的布尔值 27 28void TB2 (int id) 29{ 30 if (id == 0) 31 { 32 cout << a[id]; 33 return; 34 } 35 36 switch (opr[id - 1]) 37 { 38 case ADD: cout << "( "; TB2 (id - 1); cout << " + " << a[id] << " )"; break; 39 case SUB_L: cout << "( " << a[id] << " - "; TB2 (id - 1); cout << " )"; break; 40 case SUB_R: cout << "( "; TB2 (id - 1); cout << " - " << a[id] << " )"; break; 41 case MUL: cout << "( "; TB2 (id - 1); cout << " * " << a[id] << " )"; break; 42 case DIV_L: cout << "( " << a[id] << " / "; TB2 (id - 1); cout << " )"; break; 43 case DIV_R: cout << "( "; TB2 (id - 1); cout << " / " << a[id] << " )"; break; 44 } 45} 46 47void Print() 48{ 49 cout << "24 = "; 50 TB2(3); 51 cout << endl; 52} 53 54void Swap (int & a, int & b) 55{ 56 int tmp = a; a = b; b = tmp; 57} 58 59void TB1 (int u, int d, int id) // u: up,表示右式的分子;d: down,表示右式的分母;TB: trackback,表示回溯。 60{ 61 if (id == 0) 62 { 63 if (d != 0 && u % d == 0 && u / d == a[id]) 64 { 65 ok = true; 66 Print(); 67 } 68 return; 69 } 70 71 for (int i = id; i >= 0; --i) 72 { 73 Swap (a[id], a[i]); 74 75 // ADD : X + a[id] = u / d <==> X = (u - a[id] * d) / d 76 opr[top--] = ADD; 77 TB1 (u - a[id] * d, d, id - 1); if (ok == true) break; 78 top++; 79 80 // SUB_L : a[id] - X = u / d <==> X = (a[id] * d - u) / d 81 opr[top--] = SUB_L; 82 TB1 (a[id] * d - u, d, id - 1); if (ok == true) break; 83 top++; 84 85 // SUB_R : X - a[id] = u / d <==> X = (a[id] * d + u) / d 86 opr[top--] = SUB_R; 87 TB1 (a[id] * d + u, d, id - 1); if (ok == true) break; 88 top++; 89 90 // MUL : X * a[id] = u / d <==> X = a[id] / (a[id] * d) 91 opr[top--] = MUL; 92 TB1 (u, a[id] * d, id - 1); if (ok == true) break; 93 top++; 94 95 // DIV_L : a[id] / X = u / d <==> X = (a[id] * d) / u 96 opr[top--] = DIV_L; 97 TB1 (a[id] * d, u, id - 1); if (ok == true) break; 98 top++; 99 100 // DIV_R : X / a[id] = u / d <==> X = (a[id] * u) / d 101 opr[top--] = DIV_R; 102 TB1 (a[id] * u, d, id - 1); if (ok == true) break; 103 top++; 104 105 Swap (a[id], a[i]); 106 } 107} 108 109int main() 110{ 111 for (int i = 0; i < 4; ++i) 112 cin >> a[i]; 113 114 while (a[0] != 0 || a[1] != 0 || a[2] != 0 || a[3] != 0) 115 { 116 ok = false; 117 top = 2; 118 TB1 (24, 1, 3); 119 if (ok == false) 120 cout << "None." << endl; 121 122 for (i = 0; i < 4; ++i) 123 cin >> a[i]; 124 } 125 126 return 0; 127} 4 * 输出:加减乘除得到24的式子,否则输出"None." 5 * 思路:我们希望构造出满足形如 a[0] opr[0] a[1] opr[1] a[2] opr[2] a[3] = 24 的式子,采用回溯的思路,将右式不断缩小, 6 * 最后只剩下a[0],然后再判断左式是否与它相等,相等的话就结束搜索,输出结果。 7 * 注:1)opr[i]指的是右式(不妨设为X)和a[i]的操作类型,一共有6种: 8 * ADD: X + a[i] (= a[i] + X,算为同一种) 9 * SUB_L: a[i] - X 10 * SUB_R: X - a[i] 11 * MUL: X * a[i] (= a[i] * X,算为同一种) 12 * DIV_L: a[i] / X 13 * DIV_R: X / a[i] 14 * 2)回溯中把右式分解出分子(u)和分母(d)主要是考虑一些特殊情况,例如3, 3, 7, 7和4, 4, 5, 5 15 * 作者:lzmagic 16 */ 17 18#include <iostream> 19using namespace std; 20 21enum OPR { ADD, SUB_L, SUB_R, MUL, DIV_L, DIV_R }; 22 23int a[4]; // 操作数的数组 24OPR opr[3]; // 操作符的数组 25int top; // 当前要处理的操作符的下标 26bool ok; // 是否成功的布尔值 27 28void TB2 (int id) 29{ 30 if (id == 0) 31 { 32 cout << a[id]; 33 return; 34 } 35 36 switch (opr[id - 1]) 37 { 38 case ADD: cout << "( "; TB2 (id - 1); cout << " + " << a[id] << " )"; break; 39 case SUB_L: cout << "( " << a[id] << " - "; TB2 (id - 1); cout << " )"; break; 40 case SUB_R: cout << "( "; TB2 (id - 1); cout << " - " << a[id] << " )"; break; 41 case MUL: cout << "( "; TB2 (id - 1); cout << " * " << a[id] << " )"; break; 42 case DIV_L: cout << "( " << a[id] << " / "; TB2 (id - 1); cout << " )"; break; 43 case DIV_R: cout << "( "; TB2 (id - 1); cout << " / " << a[id] << " )"; break; 44 } 45} 46 47void Print() 48{ 49 cout << "24 = "; 50 TB2(3); 51 cout << endl; 52} 53 54void Swap (int & a, int & b) 55{ 56 int tmp = a; a = b; b = tmp; 57} 58 59void TB1 (int u, int d, int id) // u: up,表示右式的分子;d: down,表示右式的分母;TB: trackback,表示回溯。 60{ 61 if (id == 0) 62 { 63 if (d != 0 && u % d == 0 && u / d == a[id]) 64 { 65 ok = true; 66 Print(); 67 } 68 return; 69 } 70 71 for (int i = id; i >= 0; --i) 72 { 73 Swap (a[id], a[i]); 74 75 // ADD : X + a[id] = u / d <==> X = (u - a[id] * d) / d 76 opr[top--] = ADD; 77 TB1 (u - a[id] * d, d, id - 1); if (ok == true) break; 78 top++; 79 80 // SUB_L : a[id] - X = u / d <==> X = (a[id] * d - u) / d 81 opr[top--] = SUB_L; 82 TB1 (a[id] * d - u, d, id - 1); if (ok == true) break; 83 top++; 84 85 // SUB_R : X - a[id] = u / d <==> X = (a[id] * d + u) / d 86 opr[top--] = SUB_R; 87 TB1 (a[id] * d + u, d, id - 1); if (ok == true) break; 88 top++; 89 90 // MUL : X * a[id] = u / d <==> X = a[id] / (a[id] * d) 91 opr[top--] = MUL; 92 TB1 (u, a[id] * d, id - 1); if (ok == true) break; 93 top++; 94 95 // DIV_L : a[id] / X = u / d <==> X = (a[id] * d) / u 96 opr[top--] = DIV_L; 97 TB1 (a[id] * d, u, id - 1); if (ok == true) break; 98 top++; 99 100 // DIV_R : X / a[id] = u / d <==> X = (a[id] * u) / d 101 opr[top--] = DIV_R; 102 TB1 (a[id] * u, d, id - 1); if (ok == true) break; 103 top++; 104 105 Swap (a[id], a[i]); 106 } 107} 108 109int main() 110{ 111 for (int i = 0; i < 4; ++i) 112 cin >> a[i]; 113 114 while (a[0] != 0 || a[1] != 0 || a[2] != 0 || a[3] != 0) 115 { 116 ok = false; 117 top = 2; 118 TB1 (24, 1, 3); 119 if (ok == false) 120 cout << "None." << endl; 121 122 for (i = 0; i < 4; ++i) 123 cin >> a[i]; 124 } 125 126 return 0; 127}
Feedback
与其光贴代码不如把思路share出来
何如?
而且关键代码一行注释也没-。-
想问下~为什么tb1函数要swap交换后在执行后有swap
|