Posted on 2006-06-16 23:12
mahudu@cppblog 阅读(1410)
评论(2) 编辑 收藏 引用 所属分类:
数据结构、算法
http://bbs.gameres.com/showthread.asp?threadid=46513
日前在书上看到一段使用多项式逼近计算平方根的代码,至今都没搞明白作者是怎样推
算出那个公式的。但在尝试解决问题的过程中,学到了不少东西,于是便有了这篇心
得,写出来和大家共享。其中有错漏的地方,还请大家多多指教。
的确,正如许多人所说的那样,现在有有FPU,有3DNow,有SIMD,讨论软件算法好像不
合时宜。关于sqrt的话题其实早在2003年便已在 GameDev.net上得到了广泛的讨论(可
见我实在非常火星了,当然不排除还有其他尚在冥王星的人,嘿嘿)。而尝试探究该话
题则完全是出于本人的兴趣和好奇心(换句话说就是无知)。
我只是个beginner,所以这种大是大非的问题我也说不清楚(在GameDev.net上也有很多
类似的争论)。但无论如何,Carmack在DOOM3中还是使用了软件算法,而多知道一点数
学知识对3D编程来说也只有好处没坏处。3D图形编程其实就是数学,数学,还是数学。
文章原本是用HTML编排的,所以只截取了部分有比较有趣的东西放在这里。原文在我的
个人主页上,同时也提供了2篇论文的下载:http:
//greatsorcerer.go2.icpcn.com/info/fastsqrt.html
=========================================================
在3D图形编程中,经常要求平方根或平方根的倒数,例如:求向量的长度或将向量归一
化。C数学函数库中的sqrt具有理想的精度,但对于3D游戏程式来说速度太慢。我们希望
能够在保证足够的精度的同时,进一步提高速度。
Carmack在QUAKE3中使用了下面的算法,它第一次在公众场合出现的时候,几乎震住了所
有的人。据说该算法其实并不是Carmack发明的,它真正的作者是Nvidia的Gary Tarolli
(未经证实)。
-----------------------------------
//
// 计算参数x的平方根的倒数
//
float InvSqrt (float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x;
i = 0x5f3759df - (i >> 1); // 计算第一个近似根
x = *(float*)&i;
x = x*(1.5f - xhalf*x*x); // 牛顿迭代法
return x;
}
----------------------------------
该算法的本质其实就是牛顿迭代法(Newton-Raphson Method,简称NR),而NR的基础则
是泰勒级数(Taylor Series)。NR是一种求方程的近似根的方法。首先要估计一个与方
程的根比较靠近的数值,然后根据公式推算下一个更加近似的数值,不断重复直到可以
获得满意的精度。其公式如下:
-----------------------------------
函数:y=f(x)
其一阶导数为:y'=f'(x)
则方程:f(x)=0 的第n+1个近似根为
x[n+1] = x[n] - f(x[n]) / f'(x[n])
-----------------------------------
NR最关键的地方在于估计第一个近似根。如果该近似根与真根足够靠近的话,那么只需
要少数几次迭代,就可以得到满意的解。
现在回过头来看看如何利用牛顿法来解决我们的问题。求平方根的倒数,实际就是求方
程1/(x^2)-a=0的解。将该方程按牛顿迭代法的公式展开为:
x[n+1]=1/2*x[n]*(3-a*x[n]*x[n])
将1/2放到括号里面,就得到了上面那个函数的倒数第二行。
接着,我们要设法估计第一个近似根。这也是上面的函数最神奇的地方。它通过某种方
法算出了一个与真根非常接近的近似根,因此它只需要使用一次迭代过程就获得了较满
意的解。它是怎样做到的呢?所有的奥妙就在于这一行:
i = 0x5f3759df - (i >> 1); // 计算第一个近似根
超级莫名其妙的语句,不是吗?但仔细想一下的话,还是可以理解的。我们知道,IEEE
标准下,float类型的数据在32位系统上是这样表示的(大体来说就是这样,但省略了很
多细节,有兴趣可以GOOGLE):
-------------------------------
bits:31 30 ... 0
31:符号位
30-23:共8位,保存指数(E)
22-0:共23位,保存尾数(M)
-------------------------------
所以,32位的浮点数用十进制实数表示就是:M*2^E。开根然后倒数就是:M^(-1/2)*2^
(-E/2)。现在就十分清晰了。语句i> >1其工作就是将指数除以2,实现2^(E/2)的部分。
而前面用一个常数减去它,目的就是得到M^(1/2)同时反转所有指数的符号。
至于那个0x5f3759df,呃,我只能说,的确是一个超级的Magic Number。
那个Magic Number是可以推导出来的,但我并不打算在这里讨论,因为实在太繁琐了。
简单来说,其原理如下:因为IEEE的浮点数中,尾数M省略了最前面的1,所以实际的尾
数是1+M。如果你在大学上数学课没有打瞌睡的话,那么当你看到(1+M)^(-1/2)这样的形
式时,应该会马上联想的到它的泰勒级数展开,而该展开式的第一项就是常数。下面给
出简单的推导过程:
-------------------------------
对于实数R>0,假设其在IEEE的浮点表示中,
指数为E,尾数为M,则:
R^(-1/2)
= (1+M)^(-1/2) * 2^(-E/2)
将(1+M)^(-1/2)按泰勒级数展开,取第一项,得:
原式
= (1-M/2) * 2^(-E/2)
= 2^(-E/2) - (M/2) * 2^(-E/2)
如果不考虑指数的符号的话,
(M/2)*2^(E/2)正是(R>>1),
而在IEEE表示中,指数的符号只需简单地加上一个偏移即可,
而式子的前半部分刚好是个常数,所以原式可以转化为:
原式 = C - (M/2)*2^(E/2) = C - (R>>1),其中C为常数
所以只需要解方程:
R^(-1/2)
= (1+M)^(-1/2) * 2^(-E/2)
= C - (R>>1)
求出令到相对误差最小的C值就可以了
-------------------------------
上面的推导过程只是我个人的理解,并未得到证实。而Chris Lomont则在他的论文中详
细讨论了最后那个方程的解法,并尝试在实际的机器上寻找最佳的常数C。有兴趣的朋友
可以在文末找到他的论文的链接。
所以,所谓的Magic Number,并不是从N元宇宙的某个星系由于时空扭曲而掉到地球上
的,而是几百年前就有的数学理论。只要熟悉NR和泰勒级数,你我同样有能力作出类似
的优化。
在GameDev.net 上有人做过测试,该函数的相对误差约为0.177585%,速度比C标准库的
sqrt提高超过20%。如果增加一次迭代过程,相对误差可以降低到e- 004 的级数,但速
度也会降到和sqrt差不多。据说在DOOM3中,Carmack通过查找表进一步优化了该算法,
精度近乎完美,而且速度也比原版提高了一截(正在努力弄源码,谁有发我一份)。
值得注意的是,在Chris Lomont的演算中,理论上最优秀的常数(精度最高)是
0x5f37642f,并且在实际测试中,如果只使用一次迭代的话,其效果也是最好的。但奇
怪的是,经过两次NR后,在该常数下解的精度将降低得非常厉害(天知道是怎么回
事!)。经过实际的测试,Chris Lomont认为,最优秀的常数是0x5f375a86。如果换成
64位的double版本的话,算法还是一样的,而最优常数则为 0x5fe6ec85e7de30da(又一
个令人冒汗的Magic Number - -b)。
这个算法依赖于浮点数的内部表示和字节顺序,所以是不具移植性的。如果放到Mac上跑
就会挂掉。如果想具备可移植性,还是乖乖用sqrt好了。但算法思想是通用的。大家可
以尝试推算一下相应的平方根算法。
下面给出Carmack在QUAKE3中使用的平方根算法。Carmack已经将QUAKE3的所有源代码捐
给开源了,所以大家可以放心使用,不用担心会受到律师信。
---------------------------------
//
// Carmack在QUAKE3中使用的计算平方根的函数
//
float CarmSqrt(float x){
union{
int intPart;
float floatPart;
} convertor;
union{
int intPart;
float floatPart;
} convertor2;
convertor.floatPart = x;
convertor2.floatPart = x;
convertor.intPart = 0x1FBCF800 + (convertor.intPart >> 1);
convertor2.intPart = 0x5f3759df - (convertor2.intPart >> 1);
return 0.5f*(convertor.floatPart + (x * convertor2.floatPart));
}