POJ 3177 Redundant Paths 双连通分量+缩点

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:
   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7

Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

Source


    题意大意:一群牛将被在一个特定路径构成的农场上迁移,每两块农场之间都至少有一条通道,这些牛要求每两块路径至少要有两条通道,求最少需要修建多少条路才能满足要求。
    这题的解法与http://www.cppblog.com/mythit/archive/2009/05/29/86082.html完全一样,只是题目中说了图中有可能存在平行边,这里必须判断一下。我还是很偷懒的用了STL里的vector模拟邻接矩阵,并且开了个5001*5001的bool数组判断平行边。结果导致代码的效率和空间消耗都很大,110MS和将近24M的内存空间。如果自己建图的话,效率能提高很多。

#include <iostream>
#include 
<vector>
using namespace std;

const int MAXN = 5001;
vector
< vector<int> > adj;
bool hash[MAXN][MAXN];
int cnt,low[MAXN],pre[MAXN],visit[MAXN],degree[MAXN];

void dfs(int u,int v){
    visit[u]
=1;
    pre[u]
=cnt++,low[u]=pre[u];
    
int i,len=adj[u].size();
    
for(i=0;i<len;i++){
        
if(adj[u][i]==v) continue;
        
if(!visit[adj[u][i]]) dfs(adj[u][i],u);
        
if(low[adj[u][i]]<low[u]) low[u]=low[adj[u][i]];
    }

    visit[u]
=2;
}

int main(){
    
int i,j,u,v,n,m,len,ans;
    
while(scanf("%d %d",&n,&m)!=EOF){
        adj.assign(n
+1,vector<int>());
        memset(hash,
false,sizeof(hash));
        
while(m--){
            scanf(
"%d %d",&u,&v);
            
if(!hash[u][v]){
                hash[u][v]
=true;
                adj[u].push_back(v),adj[v].push_back(u);
            }

        }

        memset(visit,
0,sizeof(visit));
        cnt
=0,dfs(1,1);
        memset(degree,
0,sizeof(degree));
        
for(i=1;i<=n;i++){
            len
=adj[i].size();
            
for(j=0;j<len;j++)
                
if(low[i]!=low[adj[i][j]])
                    degree[low[i]]
++;
        }

        
for(ans=i=0;i<=n;i++)
            
if(degree[i]==1) ans++;
        printf(
"%d\n",(ans+1)/2);
    }

    
return 0;
}

posted on 2009-05-30 01:18 极限定律 阅读(1513) 评论(4)  编辑 收藏 引用 所属分类: ACM/ICPC

评论

# re: POJ 3177 Redundant Paths 双连通分量+缩点 2009-08-14 09:53 zeus

省去hash可以这样判重空间小很多 时间没多多少 依然0ms
bool isok( int u, int v )//判重
{
for ( int i= 0; i< g[u].size(); ++i )
if ( g[u][i]== v ) return false;

return true;
}  回复  更多评论   

# re: POJ 3177 Redundant Paths 双连通分量+缩点 2009-08-14 20:55 极限定律

我也想这样做的,不过怕时间效率变低,就偷懒直接HASH了@zeus
  回复  更多评论   

# re: POJ 3177 Redundant Paths 双连通分量+缩点 2011-04-28 09:30 Icyeye

拜读了哈,帮助很大,谢啦^-^
但是有一点,那个visit[u]=2不知道有什么用,但注释掉后能快三分之二左右的时间~~  回复  更多评论   

# re: POJ 3177 Redundant Paths 双连通分量+缩点[未登录] 2012-07-31 20:48 bigrabbit

楼主,我发现个问题。这组数据对于下面的数据
5 6
1 2
1 3
2 3
3 4
3 5
4 5
输出的low数组是 0 0 0 1 1
是不对的,应该是0 0 0 0 0,你建图的方式很奇怪,我也看不懂你到底是怎么建图的。可以解释下吗?我直接用vector<int> edg[]搞的,删除重边。  回复  更多评论   


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


<2009年8月>
2627282930311
2345678
9101112131415
16171819202122
23242526272829
303112345

导航

统计

常用链接

留言簿(10)

随笔分类

随笔档案

友情链接

搜索

最新评论

阅读排行榜

评论排行榜