摘要: RTTI (Run-Time Type Identification)是面向对象程序设计中一种重要的技术。现行的C++标准对RTTI已经有了明确的支持。不过在某些情况下出于特殊的开发需要,我们需要自己编码来实现。本文介绍了一些关于RTTI的基础知识及其原理和实现。
RTTI需求: 和很多其他语言一样,C++是一种静态类型语言。其数据类型是在编译期就确定的,不能在运行时更改。然而由于面向对象程序设计中多态性的要求,C++中的指针或引用(Reference)本身的类型,可能与它实际代表(指向或引用)的类型并不一致。有时我们需要将一个多态指针转换为其实际指向对象的类型,就需要知道运行时的类型信息,这就产生了运行时类型识别的要求。
C++对RTTI的支持: C++提供了两个关键字typeid和dynamic_cast和一个type_info类来支持RTTI:
dynamic_cast操作符:它允许在运行时刻进行类型转换,从而使程序能够在一个类层次结构安全地转换类型。dynamic_cast提供了两种转换方式,把基类指针转换成派生类指针,或者把指向基类的左值转换成派生类的引用。见下例讲述:
void company::payroll(employee *pe) { //对指针转换失败,dynamic_cast返回NULL if(programmer *pm=dynamic_cast(pe)){ pm->bonus(); } } void company::payroll(employee &re) { try{ //对引用转换失败的话,则会以抛出异常来报告错误 programmer &rm=dynamic_cast(re); pm->bonus(); } catch(std::bad_cast){
} }
|
这里bonus是programmer的成员函数,基类employee不具备这个特性。所以我们必须使用安全的由基类到派生类类型转换,识别出programmer指针。
typeid操作符:它指出指针或引用指向的对象的实际派生类型。
例如:
employee* pe=new manager; typeid(*pe)==typeid(manager) //true |
typeid可以用于作用于各种类型名,对象和内置基本数据类型的实例、指针或者引用,当作用于指针和引用将返回它实际指向对象的类型信息。typeid的返回是type_info类型。
type_info类:这个类的确切定义是与编译器实现相关的,下面是《C++ Primer》中给出的定义(参考资料[2]中谈到编译器必须提供的最小信息量):
class type_info { private: type_info(const type_info&); type_info& operator=( const type_info& ); public: virtual ~type_info(); int operator==( const type_info& ) const; int operator!=( const type_info& ) const; const char* name() const; };
实现目标:
实现的方案
方案一:利用多态来取得指针或应用的实际类型信息
这是一个最简单的方法,也是作者目前所采用的办法。
实现:
enum ClassType{ UObjectClass, URectViewClass, UDialogClass, …… }; class UObject{ virtual char* GetClassName() const { return "UObject"; }; virtual ClassType TypeOfClass(){ return UObjectClass; }; }; class UDialog{ virtual char* GetClassName() const { return "UDialog"; }; virtual ClassType TypeOfClass(){ return UDialogClass; }; }; | 示例:
UObject po=new UObject; UObject pr=new URectView; UObject pd=new UDialog; cout << "po is a " << po->GetClassName() << endl; cout << "pr is a " << pr->GetClassName() << endl; cout << "pd is a " << pd->GetClassName() << endl; cout<TypeOfClass()==UObjectClass< cout<TypeOfClass()==URectViewClass< cout<TypeOfClass()==UDialogClass< cout<TypeOfClass()==UObjectClass< cout<TypeOfClass()==UDialogClass<< td> | 输出:
po is a UObjectClass pr is a URectViewClass pd is a UDialogClass true true true false false | 这种实现方法也就是在基类中提供一个多态的方法,这个方法返回一个类型信息。这样我们能够知道一个指针所指向对象的具体类型,可以满足一些简单的要求。
但是很显然,这样的方法只实现了typeid的部分功能,还存在很多缺点:
1、 用户每增加一个类必须覆盖GetClassName和TypeOfClass两个方法,如果忘了,会导致程序错误。
2、 这里的类名和类标识信息不足以实现dynamic_cast的功能,从这个意义上而言此方案根本不能称为RTTI。
3、 用户必须手工维护每个类的类名与标识,这限制了以库的方式提供给用户的可能。
4、 用户必须手工添加GetClassName和TypeOfClass两个方法,使用并不方便。
其中上面的部分问题我们可以采用C/C++中的宏技巧(Macro Magic)来解决,这个可以在我们的最终解决方案的代码中看到。下面采用方案二中将予以解决上述问题。
方案二:以一个类型表来存储类型信息
这种方法考虑使用一个类结构,除了保留原有的整型类ID,类名字符串外,增加了一个指向基类TypeInfo成员的指针。
struct TypeInfo { char* className; int type_id; TypeInfo* pBaseClass; operator== (const TypeInfo& info){ return this==&info; } operator!= (const TypeInfo& info){ return this!=&info; } }; | 从这里可以看到,以这种方式实现的RTTI不支持多重继承。所幸多重继承在程序设计中并非必须,而且也不推荐。下面的代码中,我将为DP9900软件项目组中类层次结构中的几个类添加RTTI功能。DP9900项目中,绝大部分的类都以单继承方式从UObject这个根类直接或间接继承而来。这样我们就可以从UObject开始,加入我们RTTI支持所需要的数据和方法。
class UObject { public: bool IsKindOf(TypeInfo& cls); //判别某个对象是否属于某一个类 public: virtual int GetTypeID(){return rttiTypeInfo.type_id;} virtual char* GetTypeName(){return rttiTypeInfo.className;} virtual TypeInfo& GetTypeInfo(){return rttiTypeInfo;} static TypeInfo& GetTypeInfoClass(){return rttiTypeInfo;} private: static TypeInfo rttiTypeInfo; }; //依次为className、type_id、pBaseClass赋值 TypeInfo UObject::rttiTypeInfo={"UObject",0,NULL}; | 考虑从UObject将这个TypeInfo类作为每一个新增类的静态成员,这样一个类的所有对象将共享TypeInfo的唯一实例。我们希望能够在程序运行之前就为type_id,className做好初始化,并让pBaseClass指向基类的这个TypeInfo。
每个类的TypeInfo成员约定使用rttiTypeInfo的命名,为了避免命名冲突,我们将其作为private成员。有了基类的支持并不够,当用户需要RTTI支持,还需要自己来做一些事情:
1、 派生类需要从UObject继承。
2、 添加rttiTypeInfo变量。
3、 在类外正确初始化rttiTypeInfo静态成员。
4、 覆盖GetTypeID、GetTypeName、GetTypeInfo、GetTypeInfoClass四个成员函数。
如下所示:
class UView:public UObject { public: virtual int GetTypeID(){return rttiTypeInfo.type_id;} virtual char* GetTypeName(){return rttiTypeInfo.className;} virtual TypeInfo& GetTypeInfo(){return rttiTypeInfo;} static TypeInfo& GetTypeInfoClass(){return rttiTypeInfo;} private: static TypeInfo rttiTypeInfo; }; | 有了前三步,这样我们就可以得到一个不算太复杂的链表――这是一棵类型信息构成的"树",与数据结构中的树的唯一差别就是其指针方向相反。
这样,从任何一个UObject的子类,顺着pBaseClass往上找,总能遍历它的所有父类,最终到达UObject。
在这个链表的基础上,要判别某个对象是否属于某一个类就很简单。下面给出UObject::IsKindOf()的实现。
bool UObject::IsKindOf(TypeInfo& cls) { TypeInfo* p=&(this->GetTypeInfo()); while(p!=NULL){ if(p->type_id==cls.type_id) return true; p=p->pBaseClass; } return false; }
| 有了IsKindOf的支持,dynamic_cast的功能也就可以用一个简单的safe_cast来实现:
template inline T* safe_cast(UObject* ptr,TypeInfo& cls) { return (ptr->IsKindOf(cls)?(T*)ptr:NULL); } | 至此,我们已经能够从功能上完成前面的目标了,不过用户要使用这个类库的RTTI功能还很麻烦,要敲入一大堆对他们毫无意义的函数代码,要在初始化 rttiTypeInfo静态成员时手工设置类ID与类名。其实这些麻烦完全不必交给我们的用户,适当采用一些宏技巧(Macro Magic),就可以让C++的预处理器来替我们写很多枯燥的代码。关于宏不是本文的重点,你可以从最终代码清单看到它们。下面再谈谈关于类ID的问题。
类ID
为了使不同类型的对象可区分,用一个给每个TypeInfo对象一个类ID来作为比较的依据是必要的。 其实对于我们这里的需求和实现方法而言,其实类ID并不是必须的。每一个支持RTTI的类都包含了一个静态TypeInfo对象,这个对象的地址就是在进程中全局唯一。但考虑到其他一些技术如:动态对象创建、对象序列化等,它们可能会要求RTTI给出一个静态不变的ID。在本文的实现中,对此作了有益的尝试。
首先声明一个用来产生递增类ID的全局变量。再声明如下一个结构,没有数据成员,只有一个构造函数用于初始化TypeInfo的类ID:
extern int TypeInfoOrder=0; struct InitTypeInfo { InitTypeInfo(TypeInfo* info) { info->type_id=TypeInfoOrder++; } }; | 为UObject添加一个private的静态成员及其初始化:
class UObject { //…… private: static InitTypeInfo initClassInfo; }; InitTypeInfo UObject::initClassInfo(&(UObject::rttiTypeInfo)); | 并且对每一个从UObject派生的子类也进行同样的添加。这样您将看到,在C++主函数执行前,启动代码将替我们调用每一个类的 initClassInfo成员的构造函数InitTypeInfo::InitTypeInfo(TypeInfo* info),而正是这个函数替我们产生并设置了类ID。InitTypeInfo的构造函数还可以替我们做其他一些有用的初始化工作,比如将所有的 TypeInfo信息登录到一个表格里,让我们可以很方便的遍历它。
但实践与查阅资料让我们发现,由于C++中对静态成员初始化的顺序没有明确的规定,所以这样的方式产生出来的类ID并非完全静态,换一个编译器编译执行产生的结果可能完全不同。
还有一个可以考虑的方案是采用某种无冲突HASH算法,将类名转换成为一个唯一整数。使用标准CRC32算法从类型名计算出一个整数作为类ID也许是个不错的想法[3]。
程序清单
// URtti.h #ifndef __URTTI_H__ #define __URTTI_H__
class UObject;
struct TypeInfo { char* className; int type_id; TypeInfo* pBaseClass; operator== (const TypeInfo& info){ return this==&info; } operator!= (const TypeInfo& info){ return this!=&info; } };
inline std::ostream& operator<< (std::ostream& os,TypeInfo& info) { return (os<< "[" << &info << "]" << "\t" << info.type_id << ":" << info.className << ":" << info.pBaseClass << std::endl); }
extern int TypeInfoOrder;
struct InitTypeInfo { InitTypeInfo(/*TypeInfo* base,*/TypeInfo* info) { info->type_id=TypeInfoOrder++; } };
#define TYPEINFO_OF_CLASS(class_name) (class_name::GetTypeInfoClass()) #define TYPEINFO_OF_OBJ(obj_name) (obj_name.GetTypeInfo()) #define TYPEINFO_OF_PTR(ptr_name) (ptr_name->GetTypeInfo())
#define DECLARE_TYPEINFO(class_name) \ public: \ virtual int GetTypeID(){return TYPEINFO_MEMBER(class_name).type_id;} \ virtual char* GetTypeName(){return TYPEINFO_MEMBER(class_name).className;} \ virtual TypeInfo& GetTypeInfo(){return TYPEINFO_MEMBER(class_name);} \ static TypeInfo& GetTypeInfoClass(){return TYPEINFO_MEMBER(class_name);} \ private: \ static TypeInfo TYPEINFO_MEMBER(class_name); \ static InitTypeInfo initClassInfo; \
#define IMPLEMENT_TYPEINFO(class_name,base_name) \ TypeInfo class_name::TYPEINFO_MEMBER(class_name)= \ {#class_name,0,&(base_name::GetTypeInfoClass())}; \ InitTypeInfo class_name::initClassInfo(&(class_name::TYPEINFO_MEMBER(class_name)));
#define DYNAMIC_CAST(object_ptr,class_name) \ safe_cast(object_ptr,TYPEINFO_OF_CLASS(class_name))
#define TYPEINFO_MEMBER(class_name) rttiTypeInfo
class UObject { public: bool IsKindOf(TypeInfo& cls); public: virtual int GetTypeID(){return TYPEINFO_MEMBER(UObject).type_id;} virtual char* GetTypeName(){return TYPEINFO_MEMBER(UObject).className;} virtual TypeInfo& GetTypeInfo(){return TYPEINFO_MEMBER(UObject);} static TypeInfo& GetTypeInfoClass(){return TYPEINFO_MEMBER(UObject);} private: static TypeInfo TYPEINFO_MEMBER(UObject); static InitTypeInfo initClassInfo; };
template inline T* safe_cast(UObject* ptr,TypeInfo& cls) { return (ptr->IsKindOf(cls)?(T*)ptr:NULL); } #endif // URtti.cpp #include "urtti.h"
extern int TypeInfoOrder=0;
TypeInfo UObject::TYPEINFO_MEMBER(UObject)={"UObject",0,NULL}; InitTypeInfo UObject::initClassInfo(&(UObject::TYPEINFO_MEMBER(UObject)));
bool UObject::IsKindOf(TypeInfo& cls) { TypeInfo* p=&(this->GetTypeInfo()); while(p!=NULL){ if(p->type_id==cls.type_id) return true; p=p->pBaseClass; } return false; } // mail.cpp #include #include "urtti.h" using namespace std;
class UView:public UObject { DECLARE_TYPEINFO(UView) }; IMPLEMENT_TYPEINFO(UView,UObject)
class UGraph:public UObject { DECLARE_TYPEINFO(UGraph) }; IMPLEMENT_TYPEINFO(UGraph,UObject)
void main() { UObject* po=new UObject; UView* pv=new UView; UObject* pg=new UGraph; if(DYNAMIC_CAST(po,UView)) cout << "po => UView succeed" << std::endl; else cout << "po => UView failed" << std::endl; if(DYNAMIC_CAST(pv,UView)) cout << "pv => UView succeed" << std::endl; else cout << "pv => UView failed" << std::endl; if(DYNAMIC_CAST(po,UGraph)) cout << "po => UGraph succeed" << std::endl; else cout << "po => UGraph failed" << std::endl; if(DYNAMIC_CAST(pg,UGraph)) cout << "pg => UGraph succeed" << std::endl; else cout << "pg => UGraph failed" << std::endl; } | 实现结果
本文实现了如下几个宏来支持RTTI,它们的使用方法都可以在上面的代码中找到:
宏函数 |
功能及参数说明 |
DECLARE_TYPEINFO(class_name) |
为类添加RTTI功能放在类声明的起始位置 |
IMPLEMENT_TYPEINFO(class_name,base) |
同上,放在类定义任何位置 |
TYPEINFO_OF_CLASS(class_name) |
相当于typeid(类名) |
TYPEINFO_OF_OBJ(obj_name) |
相当于typeid(对象) |
TYPEINFO_OF_PTR(ptr_name) |
相当于typeid(指针) |
DYNAMIC_CAST(object_ptr,class_name) |
相当于dynamic_castobject_ptr |
性能测试
测试代码:
这里使用相同次数的DYNAMIC_CAST和dynamic_cast进行对比测试,在VC6.0下编译运行,使用默认的Release编译配置选项。为了避免编译器优化导致的不公平测试结果,我在循环中加入了无意义的计数操作。
void main() { UObject* po=new UObject; UView* pv=new UView; UObject* pg=new UGraph; int a,b,c,d; a=b=c=d=0; const int times=30000000; cerr << "时间测试输出:" << endl; cerr << "start my DYNAMIC_CAST at: " << time(NULL) << endl; for(int i=0;i if(DYNAMIC_CAST(po,UView)) a++; else a--; if(DYNAMIC_CAST(pv,UView)) b++; else b--; if(DYNAMIC_CAST(po,UGraph)) c++; else c--; if(DYNAMIC_CAST(pg,UGraph)) d++; else d--; } cerr << "end my DYNAMIC_CAST at: " << time(NULL) << endl; cerr << "start c++ dynamic_cast at: " << time(NULL) << endl; for(i=0;i if(dynamic_cast(po)) a++; else a--; if(dynamic_cast(pv)) b++; else b--; if(dynamic_cast(po)) c++; else c--; if(dynamic_cast(pg)) d++; else d--; } cerr << "end c++ dynamic_cast at: " << time(NULL) << endl; cerr << a << b << c << d << endl; } | 运行结果:
start my DYNAMIC_CAST at: 1021512140 end my DYNAMIC_CAST at: 1021512145 start c++ dynamic_cast at: 1021512145 end c++ dynamic_cast at: 1021512160 | 这是上述条件下的测试输出,我们可以看到,本文实现的这个精简RTTI方案运行DYNAMIC_CAST的时间开销只有dynamic_cast的1/3。为了得到更全面的数据,还进行了DEBUG编译配置选项下的测试。
输出:
start my DYNAMIC_CAST at: 1021512041 end my DYNAMIC_CAST at: 1021512044 start c++ dynamic_cast at: 1021512044 end c++ dynamic_cast at: 1021512059 | 这种情况下DYNAMIC_CAST运行速度要比dynamic_cast慢一倍左右。如果在Release编译配置选项下将UObject:: IsKindOf方法改成如下inline函数,我们将得到更让人兴奋的结果(DYNAMIC_CAST运行时间只有dynamic_cast的 1/5)。
inline bool UObject::IsKindOf(TypeInfo& cls) { for(TypeInfo* p=&(this->GetTypeInfo());p!=NULL;p=p->pBaseClass) if(p==&cls) return true; return false; } | 输出:
start my DYNAMIC_CAST at: 1021512041 end my DYNAMIC_CAST at: 1021512044 start c++ dynamic_cast at: 1021512044 end c++ dynamic_cast at: 1021512059 | 结论:
由本文的实践可以得出结论,自己动手编码实现RTTI是简单可行的。这样的实现可以在编译器优秀的代码优化中表现出比dynamic_cast更好的性能,而且没有带来过多的存储开销。本文的RTTI以性能为主要设计目标,在实现上一定程度上受到了MFC的影响。适于嵌入式环境。
|