transformed vertex : 默认的有视口,不需要再建立camara.
public void OnCreateVertexBuffer(object sender, EventArgs e)
{
VertexBuffer vb = (VertexBuffer)sender;
GraphicsStream stm = vb.Lock(0, 0, 0);
CustomVertex.TransformedColored[] verts = new CustomVertex.TransformedColored[3];
verts[0].X=150;verts[0].Y=50;verts[0].Z=0.5f; verts[0].Rhw=5; verts[0].Color = System.Drawing.Color.Red.ToArgb();
verts[1].X=250;verts[1].Y=250;verts[1].Z=0.5f; verts[1].Rhw=5; verts[1].Color = System.Drawing.Color.Yellow.ToArgb();
verts[2].X=50;verts[2].Y=250;verts[2].Z=0.5f; verts[2].Rhw=5; verts[2].Color = System.Drawing.Color.SkyBlue.ToArgb();
stm.Write(verts);
vb.Unlock();
}
private void Render()
{
if (device == null)
return;
//Clear the backbuffer to a blue color (ARGB = 000000ff)
device.Clear(ClearFlags.Target, System.Drawing.Color.Blue, 1.0f, 0);
//Begin the scene
device.BeginScene();
device.SetStreamSource( 0, vertexBuffer, 0);
device.VertexFormat = CustomVertex.TransformedColored.Format;
device.DrawPrimitives(PrimitiveType.TriangleList, 0, 1);
//End the scene
device.EndScene();
device.Present();
} untransformed vertex : 必须的manual建立camare去显示
public void OnCreateVertexBuffer(object sender, EventArgs e)
{
VertexBuffer vb = (VertexBuffer)sender;
CustomVertex.PositionColored[] verts = (CustomVertex.PositionColored[])vb.Lock(0,0);
verts[0].X=-1.0f; verts[0].Y=-1.0f; verts[0].Z=0.0f; verts[0].Color = System.Drawing.Color.DarkGoldenrod.ToArgb();
verts[1].X=1.0f; verts[1].Y=-1.0f ;verts[1].Z=0.0f; verts[1].Color = System.Drawing.Color.MediumOrchid.ToArgb();
verts[2].X=0.0f; verts[2].Y=1.0f; verts[2].Z = 0.0f; verts[2].Color = System.Drawing.Color.Cornsilk.ToArgb();
vb.Unlock();
}
private void Render()
{
if (device == null)
return;
if (pause)
return;
//Clear the backbuffer to a blue color
device.Clear(ClearFlags.Target, System.Drawing.Color.Blue, 1.0f, 0);
//Begin the scene
device.BeginScene();
// Setup the world, view, and projection matrices
SetupMatrices();
device.SetStreamSource(0, vertexBuffer, 0);
device.VertexFormat = CustomVertex.PositionColored.Format;
device.DrawPrimitives(PrimitiveType.TriangleList, 0, 1);
//End the scene
device.EndScene();
device.Present();
}
private void SetupMatrices()
{
// For our world matrix, we will just rotate the object about the y-axis.
// Set up the rotation matrix to generate 1 full rotation (2*PI radians)
// every 1000 ms. To avoid the loss of precision inherent in very high
// floating point numbers, the system time is modulated by the rotation
// period before conversion to a radian angle.
int iTime = Environment.TickCount % 1000;
float fAngle = iTime * (2.0f * (float)Math.PI) / 1000.0f;
device.Transform.World = Matrix.RotationY( fAngle );
// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the
// origin, and define "up" to be in the y-direction.
device.Transform.View = Matrix.LookAtLH( new Vector3( 0.0f, 3.0f,-5.0f ), new Vector3( 0.0f, 0.0f, 0.0f ), new Vector3( 0.0f, 1.0f, 0.0f ) );
// For the projection matrix, we set up a perspective transform (which
// transforms geometry from 3D view space to 2D viewport space, with
// a perspective divide making objects smaller in the distance). To build
// a perpsective transform, we need the field of view (1/4 pi is common),
// the aspect ratio, and the near and far clipping planes (which define at
// what distances geometry should be no longer be rendered).
device.Transform.Projection = Matrix.PerspectiveFovLH( (float)Math.PI / 4, 1.0f, 1.0f, 100.0f );
} 看好拉,多了一个建立matrix的function: 她的作用看代码喽!!!~~~~~~~~~~~~~~