Bellman-Ford 算法及其优化
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题。Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些。但是,原始的Bellman-Ford算法时间复杂度为 O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的《算法导论》也只介绍了基本的Bellman-Ford算法,在国内常见的基本信息学奥赛教材中也均未提及,因此该算法的知名度与被掌握度都不如Dijkstra算法。事实上,有多种形式的Bellman-Ford算法的优化实现。这些优化实现在时间效率上得到相当提升,例如近一两年被热捧的SPFA(Shortest-Path Faster Algoithm 更快的最短路径算法)算法的时间效率甚至由于Dijkstra算法,因此成为信息学奥赛选手经常讨论的话题。然而,限于资料匮乏,有关Bellman-Ford算法的诸多问题常常困扰奥赛选手。如:该算法值得掌握么?怎样用编程语言具体实现?有哪些优化?与SPFA算法有关系么?本文试图对Bellman-Ford算法做一个比较全面的介绍。给出几种实现程序,从理论和实测两方面分析他们的时间复杂度,供大家在备战省选和后续的noi时参考。
Bellman-Ford算法思想
Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。
Bellman-Ford算法流程分为三个阶段:
(1) 初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;
(2) 迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
(3) 检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。
算法描述如下:
Bellman-Ford(G,w,s) :boolean //图G ,边集 函数 w ,s为源点
1 for each vertex v ∈ V(G) do //初始化 1阶段
2 d[v] ←+∞
3 d[s] ←0; //1阶段结束
4 for i=1 to |v|-1 do //2阶段开始,双重循环。
5 for each edge(u,v) ∈E(G) do //边集数组要用到,穷举每条边。
6 If d[v]> d[u]+ w(u,v) then //松弛判断
7 d[v]=d[u]+w(u,v) //松弛操作 2阶段结束
8 for each edge(u,v) ∈E(G) do
9 If d[v]> d[u]+ w(u,v) then
10 Exit false
11 Exit true
下面给出描述性证明:
首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。
其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。
在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。
每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)
如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。
如果有负权回路,那么第 |v|-1 遍松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。
例如对于上图,边上方框中的数字代表权值,顶点A,B,C之间存在负权回路。S是源点,顶点中数字表示运行Bellman-Ford算法后各点的最短距离估计值。
此时d[a]的值为1,大于d[c]+w(c,a)的值-2,由此d[a]可以松弛为-2,然后d[b]又可以松弛为-5,d[c]又可以松弛为-7.下一个周期,d[a]又可以更新为更小的值,这个过程永远不会终止。因此,在迭代求解最短路径阶段结束后,可以通过检验边集E的每条边(u,v)是否满足关系式 d[v]> d[u]+ w(u,v) 来判断是否存在负权回路。
posted on 2009-04-03 21:50
wyiu 阅读(244)
评论(0) 编辑 收藏 引用 所属分类:
算法