随笔 - 87  文章 - 279  trackbacks - 0
<2008年7月>
293012345
6789101112
13141516171819
20212223242526
272829303112
3456789

潜心看书研究!

常用链接

留言簿(19)

随笔分类(81)

文章分类(89)

相册

ACM OJ

My friends

搜索

  •  

积分与排名

  • 积分 - 214376
  • 排名 - 116

最新评论

阅读排行榜

评论排行榜

Optimal Keypad
Time Limit:1000MS  Memory Limit:65536K
Total Submit:168 Accepted:80

Description
Optimus Mobiles produces mobile phones that support SMS messages. The Mobiles have a keypad of 12 keys, numbered 1 to 12. There is a character string assigned to each key. To type in the n-th character in the character string of a particular key, one should press the key n times. Optimus Mobiles wishes to solve the problem of assigning character strings to the keys such that for typing a random text out of a dictionary of common words, the average typing effort (i.e. the average number of keystrokes) is minimal.


Figure 1

To be more precise, consider a set of characters {a, b, c,..., z, +, *, /, ?} printed on a label tape as in Fig. 2. We want to cut the tape into 12 pieces each containing one or more characters. The 12 labels are numbered 1 to 12 from left to right and will be assigned to the keypad keys in that order.

Figure 2

You are to write a program to find the 11 cutting positions for a given dictionary of common words. The cutting positions should minimize the average number of keystrokes over all common words in the dictionary. Your output should be a string of 11 characters, where character i in this string is the first character of the (i+1)th label.

Input
The first line contains a single integer t (1 <= t <= 10), the number of test cases. Each test case starts with a line, containing an integer M (1 <= M <= 10000), the number of common words in the test case. In each M subsequent line, there is a common word. Each common word contains at most 30 characters from the alphabet {a, b, c,..., z, +, *, /, ?}.

Output
The output contains one line per test case containing an optimal cut string. Obviously, there may be more than a single optimal cut string, so print the optimal cut string which is the smallest one in lexicographic order.

Sample Input

2
2
hi
ok
5
hello
bye
how
when
who

Sample Output

bcdefghijko
bcdefhlnowy

Source
Tehran 2003

#include  < iostream >
using   namespace  std;

const   int  INF  =   100000000 ;

int  f[ 13 ][ 30 ][ 30 ];
int  s[ 13 ][ 30 ][ 30 ];
int  l[ 13 ][ 30 ][ 30 ];
char  c[]  =   { ' a ' ' b ' ' c ' ' d ' ' e ' ' f ' ' g ' ' h ' ' i ' ' j ' ' k ' ' l ' ' m ' ' n ' ' o '
            , 
' p ' ' q ' ' r ' ' s ' ' t ' ' u ' ' v ' ' w ' ' x ' ' y ' ' z ' ' + ' ' * ' ' / ' ' ? ' }
;

void  OutPut( int  k,  int  i,  int  j)
{
    
if  (l[k][i][j]  >=   0 )
    
{
        OutPut(l[k][i][j], i, s[k][i][j]);
    
        printf(
" %c " , c[s[k][i][j] + 1 ]);
        
        OutPut(k
- l[k][i][j], s[k][i][j] + 1 , j);    
    }

}


void  Solve()
{
    
int  n;
    
int  i, j, k, p, q, t, e;
    
int  cntLable[ 300 =   { 0 } ;
    
int  sum;
    
char  tmpS[ 31 ];
    scanf(
" %d " & n);
    
for  (i = 0 ; i < n; i ++ )
    
{
        scanf(
" %s " , tmpS);
        
for  (j = 0 ; j < strlen(tmpS); j ++ )
            cntLable[tmpS[j]]
++ ;
    }


    
for  (k = 1 ; k <= 12 ; k ++ )
        
for  (i = 0 ; i < 30 ; i ++ )
            
for  (j = 0 ; j < 30 ; j ++ )
            
{
                f[k][i][j] 
=  INF;
                s[k][i][j] 
=   - 1 ;
                l[k][i][j] 
=   - 1 ;
            }


    
// init k=1
     for  (i = 0 ; i < 30 ; i ++ )
    
{
        sum 
=   0 ;
        
for  (j = i, k = 1 ; j < 30 ; j ++ , k ++ )
        
{
            sum 
+=  cntLable[c[j]]  *  k;
            f[
1 ][i][j]  =  sum;
        }

    }


    
for  (k = 2 ; k <= 12 ; k ++ )
        
for  (i = 0 ; i < 30 ; i ++ )
            
for  (j = i + k - 1 ; j < 30 ; j ++ )
            
{
                
for  (t = i; t < j; t ++ )
                
{
                    e 
=  k - 1   <  t - i + 1   ?  k - 1  : t - i + 1 ;
                    
for  (p = 1 ; p <= e; p ++ )
                        
if  (f[k][i][j]  >  f[p][i][t]  +  f[k - p][t + 1 ][j])
                        
{
                            f[k][i][j] 
=  f[p][i][t]  +  f[k - p][t + 1 ][j];
                            s[k][i][j] 
=  t;
                            l[k][i][j] 
=  p;
                        }

                }

            }


    OutPut(
12 0 29 );
    printf(
" \n " );
}


int  main()
{
    
int  n;
    scanf(
" %d " & n);
    
while  (n --   !=   0 )
    
{
        Solve();
    }

    
return   0 ;
}
posted on 2006-09-26 18:51 阅读(498) 评论(1)  编辑 收藏 引用 所属分类: ACM题目

FeedBack:
# re: 线形模型中分, 三维DP(pku2292) 2006-10-05 01:15 Asp
这道题我也做了,但是似乎理解错了题意,结果,WA了2个小时……
之后,放弃……  回复  更多评论
  

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理