随笔 - 87  文章 - 279  trackbacks - 0
<2024年11月>
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

潜心看书研究!

常用链接

留言簿(19)

随笔分类(81)

文章分类(89)

相册

ACM OJ

My friends

搜索

  •  

积分与排名

  • 积分 - 214432
  • 排名 - 116

最新评论

阅读排行榜

评论排行榜

Antenna Placement
Time Limit:1000MS  Memory Limit:65536K
Total Submit:380 Accepted:125

Description
The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.

Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input
On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output
For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

Source
Svenskt Mästerskap i Programmering/Norgesmesterskapet 2001

myCode:

#include  < iostream >
using   namespace  std;

const   int  INF  =   1   <<   28 ;

int  n, r, c;
int  e[ 11 =   { 1 2 4 8 16 32 64 128 256 512 1024 } ;
char  m[ 50 ][ 20 ];
int  d[ 50 ][ 1024 ];
int  b[ 20 ];
int  cc[ 20 ];
int  ss;

void  Try( int  x,  int  s)
{
    
if  (x  >=  c)  {
        
int  k  =   0 ;
        
for  ( int  i = 0 ; i < c; i ++ {
            k 
+=  b[i]  *  e[i];
        }

        
if  (d[ 0 ][k]  ==   - 1   ||  d[ 0 ][k]  >  s)
            d[
0 ][k]  =  s;
        
return  ;
    }

    
if  (m[ 0 ][x]  ==   ' o ' {
        Try(x
+ 1 , s);
    }
  else   if  (m[ 0 ][x]  ==   ' * ' {
        
int  t1  =  b[x], t2  =  b[x + 1 ], t3  =  s;
        b[x] 
=   1 ; b[x + 1 =   1 ; s  +=   1 ;
        Try(x
+ 2 , s);
        b[x] 
=  t1; b[x + 1 =  t2; s  =  t3;
        
if  (r  !=   1   ||  m[ 0 ][x]  ==   ' o ' ) Try(x + 1 , s);
    }
  
}


void  DFS( int  i,  int  x,  int  s)
{
    
if  (x  >=  c)  {
        
int  k  =   0 ;
        
for  ( int  j = 0 ; j < c; j ++ {
            k 
+=  cc[j]  *  e[j];
        }

        
if  (d[i][k]  ==   - 1   ||  d[i][k]  >  ss  +  s)
            d[i][k] 
=  ss  +  s;
        
return  ;
    }

    
if  (b[x]  ==   0 {
        
if  (m[i - 1 ][x]  ==   ' * ' {
            cc[x] 
=   1 ; s  +=   1 ;
            DFS(i, x
+ 1 , s);
        }
  else   {
            
if  (m[i][x]  ==   ' * ' {
                
int  t1  =  cc[x], t2  =  cc[x + 1 ], t3  =  s;
                cc[x] 
=   1 ;  cc[x + 1 =   1 ; s  +=   1 ;
                
if  (b[x + 1 ==   0   &&  m[i - 1 ][x + 1 ==   ' * ' )
                    s 
+=   1 ;
                DFS(i, x
+ 2 , s);
                cc[x] 
=  t1; cc[x + 1 =  t2; s  =  t3;
                
if  (i  !=  r - 1   ||  m[i][x]  ==   ' o ' ) DFS(i, x + 1 , s);
            }
  else   if  (m[i][x]  ==   ' o ' {
                DFS(i, x
+ 1 , s);
            }

        }

    }
  else   {
            
if  (m[i][x]  ==   ' * ' {
                
int  t1  =  cc[x], t2  =  cc[x + 1 ], t3  =  s;
                cc[x] 
=   1 ;  cc[x + 1 =   1 ; s  +=   1 ;
                
if  (b[x + 1 ==   0   &&  m[i - 1 ][x + 1 ==   ' * ' )
                    s 
+=   1 ;
                DFS(i, x
+ 2 , s);
                cc[x] 
=  t1; cc[x + 1 =  t2; s  =  t3;
                
if  (i  !=  r - 1   ||  m[i][x]  ==   ' o ' ) DFS(i, x + 1 , s);
            }
  else   if  (m[i][x]  ==   ' o ' {
                DFS(i, x
+ 1 , s);
            }
      
    }

}


void  init()
{
    memset(d[
0 ],  - 1 sizeof (d[ 0 ]));
    memset(b, 
0 sizeof (b));
    Try(
0 0 );
}


void  Solve() 
{
    
int  i, j, k;
    init();
    
for  (i = 0 ; i < r - 1 ; i ++ {
        memset(d[i
+ 1 ],  - 1 sizeof (d[i + 1 ]));
        
for  (k = 0 ; k < e[c]; k ++ {
            
if  (d[i][k]  !=   - 1 {
                
int  t  =  k, j  =   0 , kk  =   0 ;
                memset(b, 
0 sizeof (b));
                memset(cc, 
0 sizeof (cc));
                
while  (t  !=   0 {
                    b[j
++ =  t  %   2 ;
                    t 
/=   2 ;
                }

                ss 
=  d[i][k];
                DFS(i
+ 1 0 0 );
            }

        }

    }

    
int  ans  =  INF;
    
for  (k = 0 ; k < e[c]; k ++ {
        
if  (d[r - 1 ][k]  !=   - 1   &&  d[r - 1 ][k]  <  ans)  {
            ans 
=  d[r - 1 ][k];
        }

    }

    cout 
<<  ans  <<  endl;
}


int  main()

    cin 
>>  n;
    
while  (n --   !=   0 {
        cin 
>>  r  >>  c;
        
for  ( int  i = 0 ; i < r; i ++ ) cin  >>  m[i];
        Solve();
    }

    system(
" pause " );
    
return   0 ;
}


ghost_wei大牛的code,  放出来供大家学习,  用了滚动数组优化, 而且位运算用得出神入化:)
#include<iostream.h>
#include 
<fstream.h>
const int k2[11]={1,2,4,8,16,32,64,128,256,512,1024};
int n,m,c[2][1024];
char d[40][10];
inline 
void min(int &i,int j)
{
    
if (i>j) i=j;
}

void work()
{
    
int i,j,km,k,e7,e8,l,t,ans;
    km
=k2[m];
    
for (i=0;i<km;i++) c[0][i]=100000;
    c[
0][0]=0;
    e7
=0; e8=1;
    
for (i=0;i<n;i++)
    
{
        
for (j=0;j<km;j++) c[e8][j]=100000;
        
for (j=1;j<m;j++)
            
if (d[i][j]=='*')
                
for (k=0;k<km;k++)
                    min(c[e7][k
|k2[j]|k2[j-1]],c[e7][k]+1);
        
for (k=0;k<km;k++)
        
{
            l
=0; t=0;
            
for (j=0;j<m;j++
                
if (!(k&k2[j])&&d[i][j]=='*')
                
{
                    l
+=k2[j];
                    t
++;
                }

            min(c[e8][l],c[e7][k]
+t);
        }

        e7
=e7^1; e8=e8^1;
    }

    ans
=100000;
    
for (k=0;k<km;k++)
        min(ans,c[e7][k]);
    cout
<<ans<<endl;
}

int main()
{
    
int tc,cas,i,j;
    cin
>>tc;
    
for (cas=1;cas<=tc;cas++)
    
{
        cin
>>n>>m;
        
for (i=0;i<n;i++)
            
for(j=0;j<m;j++)
                cin
>>d[i][j];
        work();
    }

    
return 0;
}

posted on 2006-10-18 17:29 阅读(2105) 评论(4)  编辑 收藏 引用 所属分类: ACM题目

FeedBack:
# re: 状态压缩DP, pku3020[未登录] 2007-04-30 11:16 Leon
Ghost的算法真是精辟,只是状态数组定义的空间可能会不够,代码的line 30  回复  更多评论
  
# re: 状态压缩DP, pku3020 2007-06-30 10:35 姜雨生
真是太好了
以后多向你请教  回复  更多评论
  
# re: 状态压缩DP, pku3020[未登录] 2008-07-02 08:22 菜鸟
大牛解释一下这一段吧:
for (i=0;i<n;i++)
{
for (j=0;j<km;j++) c[e8][j]=100000;
for (j=1;j<m;j++)
if (d[i][j]=='*')
for (k=0;k<km;k++)
min(c[e7][k|k2[j]|k2[j-1]],c[e7][k]+1);
for (k=0;k<km;k++)
{
l=0; t=0;
for (j=0;j<m;j++)
if (!(k&k2[j])&&d[i][j]=='*')
{
l+=k2[j];
t++;
}
min(c[e8][l],c[e7][k]+t);
}
e7=e7^1; e8=e8^1;
}
  回复  更多评论
  
# re: 状态压缩DP, pku3020 2008-08-04 22:56 ecnu
二分匹配做的。。关键是状态压缩不会。5555...  回复  更多评论
  

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理