随笔 - 87  文章 - 279  trackbacks - 0
<2024年11月>
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

潜心看书研究!

常用链接

留言簿(19)

随笔分类(81)

文章分类(89)

相册

ACM OJ

My friends

搜索

  •  

积分与排名

  • 积分 - 214327
  • 排名 - 116

最新评论

阅读排行榜

评论排行榜

写了个比较通用的堆,可直接用作优先队列

Silver Cow Party
Time Limit:2000MS  Memory Limit:65536K
Total Submit:1112 Accepted:326

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

 

Input
Line 1: Three space-separated integers, respectively: N, M, and X
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output
Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

 

Sample Output

10

 

Hint
Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

Source
USACO 2007 February Silver



#include <iostream>
using namespace std;

const int INF = 1 << 28;

int adj[1001][1001], adjw[1001][1001], na[1001];
int n, m, x;


//heap sink,swim,getmin,insert参数均为外部编号,wt为其权值
int heap[100001], id[100001], hsize;
int *key;
void init(int s, int *wt) {
    
int i;
    hsize 
= s; 
    key 
= wt;
    
for (i=1; i<=hsize; i++{
        heap[i] 
= i;
        id[i] 
= i;
    }

}

void swim(int u) {
    
int p = id[u], q = p >> 1, ku = key[u];
    
while (q && ku < key[heap[q]]) {
        id[heap[q]] 
= p;
        heap[p] 
= heap[q];
        p 
= q;
        q 
= p >> 1;
    }

    id[u] 
= p;
    heap[p] 
= u;
}

void sink(int u) {
    
int p = id[u],q = p << 1, ku = key[u];
    
while (q <= hsize) {
        
if (q < hsize && key[heap[q+1]] < key[heap[q]]) q++;
        
if (key[heap[q]] >= ku) break;
        id[heap[q]] 
= p;
        heap[p] 
= heap[q];
        p 
= q; 
        q 
= p << 1;
    }

    id[u] 
= p;
    heap[p] 
= u;
}

int getmin() {
    
int ret = heap[1];
    id[ret] 
= -1;
    id[heap[hsize]] 
= 1;
    heap[
1= heap[hsize];
    hsize
--;
    sink(heap[
1]);
    
return ret;
}

void insert(int u) {
    heap[
++hsize] = u;
    id[u] 
= hsize;
    swim(u);
}

void build() {
    
int i;
    
for (i=hsize/2; i>0; i--) sink(heap[i]);
}

bool isEmpty() {
    
return hsize == 0;
}

int dijkstraHeap(int beg, int end=-1{
    
int i, j, k, u, v, w;
    
int dist[1001], chk[1001];
    
for (i=1; i<=n; i++{
        dist[i] 
= INF;
        chk[i] 
= 0;
    }

    init(n, dist);
    dist[beg] 
= 0; swim(beg);
    
while (!isEmpty()) {
        u 
= getmin();
        
if (u == end) break;
        chk[u] 
= 1;
        
for (i=0; i<na[u]; i++{
            v 
= adj[u][i];
            w 
= adjw[u][i];
            
if (dist[v] > dist[u] + w) {
                dist[v] 
= dist[u] + w;
                swim(v);
            }

        }

    }

    
if (end == -1return dist[n];
    
return dist[end];
}


int main() {
    
int i, j, k, u, v, w;
    
int val[1001];
    scanf(
"%d%d%d"&n, &m, &x);
    
for (i=0; i<m; i++{
        scanf(
"%d%d%d"&u, &v, &w);
        adj[u][na[u]] 
= v; 
        adjw[u][na[u]] 
= w;
        na[u]
++;
    }

   
    dijkstraHeap(x);
    memcpy(val, key, 
sizeof(val));
    
    
int ans = 0;
    
for (i=1; i<=n; i++{
        
int tmp = dijkstraHeap(i,x);
        
if (tmp+val[i] > ans) ans = tmp + val[i];
    }

    
    printf(
"%d\n", ans);
    
return 0;
}
posted on 2007-07-23 20:51 阅读(1269) 评论(4)  编辑 收藏 引用 所属分类: 数据结构与算法ACM题目

FeedBack:
# re: pku3268 dij+heap 2007-07-27 08:41 oyjpart
终于更新blog了。。。  回复  更多评论
  
# re: pku3268 dij+heap 2007-08-01 20:29 relic
不必n次dijkstra,只要把所有边反向,再来一次dijkstra就可以了。算上第一次一共两次dij  回复  更多评论
  
# re: pku3268 dij+heap 2007-08-03 22:58 
偷懒了:)  回复  更多评论
  
# re: pku3268 dij+heap 2007-09-18 13:16 drizzlecrj
@relic
re  回复  更多评论
  

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理