计算几何相关模板(更新中……)
最近在学计算几何,边学,边整理模板,有错的话请大家指出!
1
//计算几何模板 ~ alpc02
2
const double PRECISION = 1e-8;
3
struct Point
{
4
double x, y;
5
};
6
int dblcmp(double d)
{
7
return (fabs(d) < PRECISION) ? 0:(d>0 ? 1:-1);
8
} //三叉口函数,避免精度误差
9
double length(double x, double y)
{
10
return sqrt(x*x + y*y);
11
} //向量长度
12
double dotdet(double x1, double y1, double x2, double y2)
{
13
return x1*x2 + y1*y2;
14
} //点积
15
double det(double x1, double y1, double x2, double y2)
{
16
return x1*y2 - x2*y1;
17
} //叉积
18
int cross(const Point &a, const Point &c, const Point &d)
{
19
return dblcmp( det(a.x-c.x, a.y-c.y, d.x-c.x, d.y-c.y) );
20
} //右手螺旋定则,1——a在cd右侧,-1——a在cd左侧,0——三点共线
21
bool between(const Point &a, const Point &c, const Point &d)
{
22
return dblcmp( dotdet(c.x-a.x, c.y-a.y, d.x-a.x, d.y-a.y) ) != 1;
23
} //在cross(a,c,d)==0的基础上,可判断点a是否在cd内部
24
int segIntersect(const Point &a, const Point &b, const Point &c, const Point &d)
{
25
int a_cd = cross(a,c,d);
26
if(a_cd == 0 && between(a,c,d)) return 2;
27
int b_cd = cross(b,c,d);
28
if(b_cd == 0 && between(b,c,d)) return 2;
29
int c_ab = cross(c,a,b);
30
if(c_ab == 0 && between(c,a,b)) return 2;
31
int d_ab = cross(d,a,b);
32
if(d_ab == 0 && between(d,a,b)) return 2;
33
if ((a_cd ^ b_cd) == -2 && (c_ab ^ d_ab) == -2)
34
return 1;
35
return 0;
36
} //两线段相交情况:0——不相交,1——规范相交,2——不规范相交(交于端点或重合)
37
void intersectPoint(const Point &a, const Point &b, const Point &c, const Point &d, Point &e)
{
38
double sc, sd;
39
sc = fabs( det(b.x-a.x, b.y-a.y, c.x-a.x, c.y-a.y) );
40
sd = fabs( det(b.x-a.x, b.y-a.y, d.x-a.x, d.y-a.y) );
41
e.x = (sc * d.x + sd * c.x) / (sc + sd);
42
e.y = (sc * d.y + sd * c.y) / (sc + sd);
43
} //两线段规范相交时,求交点坐标
44
int linesegIntersect(const Point &a, const Point &b, const Point &c, const Point &d)
{
45
int c_ab = cross(c,a,b);
46
if(c_ab == 0) return 2;
47
int d_ab = cross(d,a,b);
48
if(d_ab == 0) return 2;
49
if(c_ab ^ d_ab == -2)
50
return 1;
51
return 0;
52
} //直线ab和线段cd相交情况:0——不相交,1——规范相交,2——不规范相交(交于端点或重合)
53
int lineIntersect(const Point &a, const Point &b, const Point &c, const Point &d)
{
54
if(dblcmp(det(b.x-a.x, b.y-a.y, d.x-c.x, d.y-c.y)) != 0)
55
return 1;
56
if(cross(a,c,d) == 0)
57
return 2;
58
return 0;
59
} //两直线相交情况:0——平行,1——规范相交,2——不规范相交(重合)
60
posted on 2007-08-22 18:39
LSM 阅读(1922)
评论(6) 编辑 收藏 引用 所属分类:
计算几何