动态规划即是一个重点,又是一个难点。
今天终于做出了一题像样的动态规划题。
Problem Id:1163 User Id:beyonlin_SCUT
Memory:100K Time:0MS
Language:C++ Result:Accepted
http://acm.pku.edu.cn/JudgeOnline/problem?id=1163
The Triangle
Time Limit:1000MS Memory Limit:10000K
Total Submit:3415 Accepted:1988
Description
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
Input
Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
Output
Your program is to write to standard output. The highest sum is written as an integer.
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
分析:
题意简化为:
从第一行开始走到最后一行,每步可以向下走或右下走。
所求即为从第一行走到最后一行经过的数总和的最大值。
令p[][]存储input。
5
7
3 8
8 1 0
2 7 4 4
| \ | \
4 5 2 6 5
如上图,令i为行,j为列,
d[i][j]为从第一行走到第i行第j列的最大值。
对于(i,j)这个点,它可以从不同方向走来,如图' | '代表从上方走来,' \ '代表从左上方走来。
则动态规则方程为:
{ d[i-1][1]+p[i][1] (j=1)
d[i][j]=Max{ Max( d[i-1][j-1] , d[i-1][j] ) + p[i][j] (1<j<i)
{ d[i-1][i-1]+p[i][i] (j=i)
结果为Max(d[n][j]) , (1<=j<=n)
代码如下:#include<cstdio>
int p[100][100];
int d[100][100];
int Max(int a,int b)
{return a>b?a:b;}
int main()
{
int i,n;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
int j;
for(j=1;j<=i;j++)
scanf("%d",p[i]+j);
}
d[1][1]=p[1][1];
for(i=2;i<=n;i++)
{
int j;
d[i][1]=d[i-1][1]+p[i][1];
for(j=2;j<=i;j++)
d[i][j]=Max(d[i-1][j-1],d[i-1][j])+p[i][j];
d[i][i]=d[i-1][i-1]+p[i][i];
}
int max=0;
for(i=1;i<=n;i++)
{
if(d[n][i]>max)
max=d[n][i];
}
printf("%d\n",max);
return 0;
}
posted on 2006-08-28 10:31
beyonlin 阅读(586)
评论(2) 编辑 收藏 引用 所属分类:
acm之路