oyjpArt ACM/ICPC算法程序设计空间

// I am new in programming, welcome to my blog
I am oyjpart(alpc12, 四城)
posts - 224, comments - 694, trackbacks - 0, articles - 6

PKU1568 Find the Winning Move

Posted on 2007-03-02 17:50 oyjpart 阅读(1597) 评论(2)  编辑 收藏 引用 所属分类: ACM/ICPC或其他比赛

Find the Winning Move
Time Limit:3000MS  Memory Limit:32768K
Total Submit:120 Accepted:67

Description
4x4 tic-tac-toe is played on a board with four rows (numbered 0 to 3 from top to bottom) and four columns (numbered 0 to 3 from left to right). There are two players, x and o, who move alternately with x always going first. The game is won by the first player to get four of his or her pieces on the same row, column, or diagonal. If the board is full and neither player has won then the game is a draw.
Assuming that it is x's turn to move, x is said to have a forced win if x can make a move such that no matter what moves o makes for the rest of the game, x can win. This does not necessarily mean that x will win on the very next move, although that is a possibility. It means that x has a winning strategy that will guarantee an eventual victory regardless of what o does.

Your job is to write a program that, given a partially-completed game with x to move next, will determine whether x has a forced win. You can assume that each player has made at least two moves, that the game has not already been won by either player, and that the board is not full.

Input
The input contains one or more test cases, followed by a line beginning with a dollar sign that signals the end of the file. Each test case begins with a line containing a question mark and is followed by four lines representing the board; formatting is exactly as shown in the example. The characters used in a board description are the period (representing an empty space), lowercase x, and lowercase o. For each test case, output a line containing the (row, column) position of the first forced win for x, or '#####' if there is no forced win. Format the output exactly as shown in the example.

Output
For this problem, the first forced win is determined by board position, not the number of moves required for victory. Search for a forced win by examining positions (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), ..., (3, 2), (3, 3), in that order, and output the first forced win you find. In the second test case below, note that x could win immediately by playing at (0, 3) or (2, 0), but playing at (0, 1) will still ensure victory (although it unnecessarily delays it), and position (0, 1) comes first.

Sample Input

?
....
.xo.
.ox.
....
?
o...
.ox.
.xxx
xooo
$

 

 

 

Sample Output

#####
(0,1)

 

 

 

Source
Mid-Central USA 1999

这个博弈 我用了Alpha-Beta剪枝 搜索是标准的极大极小的搜索过程
hash用的是4进制的便于位运算的hash

 

Feedback

# re: PKU1568 Find the Winning Move   回复  更多评论   

2007-03-11 19:08 by nick
const int MAX = (1<<24)+1;

MAX 不是應該是 (1<<28)

因為扣掉一開始盤面上一定有兩個子以上 4*4-2 = 14
然後 2*14 = 28

為什麼是 1<<24 呢?

# re: PKU1568 Find the Winning Move   回复  更多评论   

2007-03-11 19:40 by oyjpart
[quote] "You can assume that each player has made at least two moves, ..."
which means that there must be 4 moves at the beginning :)

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理