oyjpArt ACM/ICPC算法程序设计空间

// I am new in programming, welcome to my blog
I am oyjpart(alpc12, 四城)
posts - 224, comments - 694, trackbacks - 0, articles - 6

中南赛A题 Accumulation Degree

Posted on 2008-05-05 20:59 oyjpart 阅读(3042) 评论(9)  编辑 收藏 引用 所属分类: ACM/ICPC或其他比赛
Accumulation Degree
Time Limit: 5000MS
Memory Limit: 65536K
Total Submissions: 248
Accepted: 30

Description

Trees are an important component of the natural landscape because of their prevention of erosion and the provision of a specific ather-sheltered ecosystem in and under their foliage. Trees have also been found to play an important role in producing oxygen and reducing carbon dioxide in the atmosphere, as well as moderating ground temperatures. They are also significant elements in landscaping and agriculture, both for their aesthetic appeal and their orchard crops (such as apples). Wood from trees is a common building material.

Trees also play an intimate role in many of the world's mythologies. Many scholars are interested in finding peculiar properties about trees, such as the center of a tree, tree counting, tree coloring. A(x) is one of such properties.

A(x) (accumulation degree of node x) is defined as follows:

  1. Each edge of the tree has an positive capacity.
  2. The nodes with degree of one in the tree are named terminals.
  3. The flow of each edge can't exceed its capacity.
  4. A(x) is the maximal flow that node x can flow to other terminal nodes.

Since it may be hard to understand the definition, an example is showed below:


A(1)=11+5+8=24
Details: 1->2 11
  1->4->3 5
  1->4->5 8(since 1->4 has capacity of 13)
A(2)=5+6=11
Details: 2->1->4->3 5
  2->1->4->5 6
A(3)=5
Details: 3->4->5 5
A(4)=11+5+10=26
Details: 4->1->2 11
  4->3 5
  4->5 10
A(5)=10
Details: 5->4->1->2 10

The accumulation degree of a tree is the maximal accumulation degree among its nodes. Here your task is to find the accumulation degree of the given trees.

Input

The first line of the input is an integer T which indicates the number of test cases. The first line of each test case is a positive integer n. Each of the following n - 1 lines contains three integers x, y, z separated by spaces, representing there is an edge between node x and node y, and the capacity of the edge is z. Nodes are numbered from 1 to n.
All the elements are nonnegative integers no more than 200000. You may assume that the test data are all tree metrics.

Output

For each test case, output the result on a single line.
 

Sample Input

1
5
1 2 11
1 4 13
3 4 5
4 5 10

Sample Output

26

Source


这道题的基本思想是树形DP,如果不能理解的话请试图把双向边看成两个单向边,再比划比划就出来了。
当然不一定非要以边做为DP的单元,也可以归到边上(如果你有那份心的话)。
比赛的时候因为数据量大而Stack Overflow,一直想写人工模拟栈,但因为没写过,在比赛中写不出来。

五一节虚心的跟alpc62学习了怎么写人工模拟栈,核心思想就是将同一个DFS内的不同DFS做个标记,这样在出栈的时候就可以判断自己所处的位置,也就知道自己该采取什么行动了。
比如
void DFS(int x) {
    for(int i = 0; i < head[x].size(); ++i) {
       DFS(head[x][i]);
    }
}
如果把(x, i)这个2元组压入栈也就知道自己现在所处的地方了。
如果有更多的内部DFS,同样是加对应的标记。

当然,BFS也是一种很好的选择(应该说大多数队伍会选择BFS而不是人工模拟栈)

//Accumulation Degree in BFS

#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

#define Min(a, b) (a<b?a:b)
#define Max(a, b) (a>b?a:b)

struct Node
{
    int x, i, pre;
    Node() {}
    Node(int xx, int ii, int pp) {x=xx, i = ii, pre=pp;}
};

struct Edge
{
    int x, w, dp;
    Edge() {}
    Edge(int xx, int ww, int dd=0) { x=xx,w=ww,dp=dd;}
};

const int N = 200010;
vector<Edge> e[N];
bool chk[N];
int n, flow[N];

void solve() {
    int i, j, k;
    vector<Node> Q;

    fill(chk, chk + n, 0);
    fill(flow, flow + n, 0);

    for(i = 0; i < n && e[i].size()!=1; ++i);
    int st = 0, end = 0;
    chk[i] = 1;
    for(j = 0; j < e[i].size(); ++j) {
        Q.push_back(Node(i, j, -1));
        end++;
        chk[e[i][j].x] = 1;
    }
    while(st < end) {
        int x = e[Q[st].x][Q[st].i].x, pre = Q[st].pre;
        for(i = 0; i < e[x].size(); ++i) {
            if(!chk[e[x][i].x]) {
                Q.push_back(Node(x, i, st));
                end++;
                chk[e[x][i].x] = 1;
            }
        }
        ++st;
    }
    for(i = end-1; i >= 0; --i) {
        int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
        if(e[e[x][idx].x].size() == 1) e[x][idx].dp = e[x][idx].w;
        else e[x][idx].dp = Min(e[x][idx].dp, e[x][idx].w);
        if(pre == -1) continue;
        int prex = Q[pre].x, preidx = Q[pre].i;
        e[prex][preidx].dp += e[x][idx].dp;
    }


    for(i = 0; i < e[Q[0].x].size(); ++i) {
        flow[Q[0].x] += e[Q[0].x][i].dp;
    }
    for(i = 0; i < end; ++i) {
        int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
        int y = e[x][idx].x, xx;
        for(xx = 0; xx < e[y].size() && e[y][xx].x != x; ++xx);
        if(pre == -1) {
            e[y][xx].dp = e[y][xx].w;
        }
        else {
            e[y][xx].dp = Min(e[y][xx].dp, e[y][xx].w);
        }
        for(j = 0; j < e[y].size(); ++j) {
            flow[y] += e[y][j].dp;
        }
        for(j = 0; j < e[y].size(); ++j) {
            int yy = e[y][j].x;
            if(yy == x) continue;
            for(k = 0; k < e[yy].size() && e[yy][k].x != y; ++k);
            e[yy][k].dp = flow[y] - e[y][j].dp;
        }
    }

    int max = 0;
    for(i = 0; i < n; ++i)
        max = Max(max, flow[i]);
    printf("%d\n", max);
}

int main() {
    int ntc;
    int i;
    int x, y, w;
    scanf("%d", &ntc);
    while(ntc--) {
        scanf("%d", &n);
        for(i = 0; i < n; ++i) e[i].clear();
        for(i = 0; i < n-1; ++i) {
            scanf("%d %d %d", &x, &y, &w);
            --x; --y;
            e[x].push_back(Edge(y, w));
            e[y].push_back(Edge(x, w));
        }
        solve();
    }
    return 0;
}


Feedback

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-05-06 14:41 by wlzb
不错呀,上原创精华了

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-05-06 18:00 by oyjpart
哦?

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-05-12 21:15 by alpc55
太强了,你竟然模拟栈……

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-05-13 22:52 by ecnu_zp
哦~~
学习学习·~

公网能进你们的oj系统吗??

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-05-13 22:52 by ecnu_zp
哦~~
学习学习·~

公网能进你们的oj系统吗??
教育网

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-05-13 23:50 by oyjpart
我们是军网 外网应该不能访问

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-05-14 17:15 by ecnu_zp
我还是不太明白啊~
我想的dp是N^2A的,因为要对所有点执行一次~~
我弱,能不能教我一下啊。

ecnu_zp@yahoo.cn
QQ:345717212
MSN: arena_zp@live.cn

^_^

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-05-14 20:08 by oyjpart
每条边拆成2条边 。 然后对每条边设一个DP值。
比如边A->B. B连接的其他点的集合叫做S(S中去掉A)
dp[A->B] = Min(Capacity[A->B], 加合(dp[B->Ci]));
可以通过2次DFS来求出这些DP值。第一次求出一个方向的边的DP值,再一次求出反向。
试着画个图来理解吧:)

# re: 中南赛A题 Accumulation Degree  回复  更多评论   

2008-07-26 06:06 by lengbufang
看看!!

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理