void Obstinate(InputType x, OutputType &y)
{
// 反复调用拉斯维加斯算法LV(x, y),直到找到问题的一个解
bool success= false;
while (!success)
success = LV(x,y);
}
对于n后问题的任何一个解而言,每一个皇后在棋盘上的位置无任何规律,不具有系统性,而更象是随机放置的。由此容易想到下面的拉斯维加斯算法。
在棋盘上相继的各行中随机地放置皇后,并注意使新放置的皇后与已放置的皇后互不攻击,直至n个皇后已相容地放置好,或已没有下一个皇后的可放置位置时为止。注意这里解决的是找到其中一个方法,求不是求出N皇后的全部解。
这里提前说明一下,否则不好理解。
接下来的这个用Las Vegas算法解决N皇后问题,我们采用的是随机放置位置策略和回溯法相结合,具体就是比如八皇后中,前几行选择用随机法放置皇后,剩下的选择用回溯法解决。
这个程序不是很好理解,有的地方我特别说明了是理解程序的关键,大家看时一定要认真了,另外,王晓东的书上先是用单纯的随机法解决,大家可以先去理解书上这个例子。然后再来分析我这个程序。不过那本书上关于这一块错误比较多,大家看时要注意哪些地方他写错了。
拉斯维加斯算法解决N皇后代码:
依然用到了RandomNumber.h头文件,大家可以去看下第一章,我就不贴出来了。
剩下部分的代码:
注意QueensLV()函数是这个程序的精髓所在。
Queen.h头文件
#ifndef QUEEN_H
#define QUEEN_H
class Queen
{
friend bool nQueen(int);
private:
bool Place(int k); // 测试皇后k置于第x[k]列的合法性
bool Backtrack(int t); // 解n后问题的回溯法
bool QueensLV(int stopVegas); // 随机放置n个皇后拉斯维加斯算法
int n, *x, *y;
};
#endif
Queen.cpp文件
#include <iostream>
#include "Queen.h"
#include "RandomNumber.h"
using namespace std;
bool Queen::Place(int k)
{
// 测试皇后k置于第x[k]列的合法性
for(int j = 1; j < k; ++ j)
if((abs(k-j) == abs(x[j]-x[k])) || (x[j]==x[k]))
return false;
return true;
}
bool Queen::Backtrack(int t)
{
// 解n后问题的回溯法
if(t > n)
{
for(int i=1; i<=n; ++i)
y[i] = x[i];
return true;
}
else
for(int i=1; i<=n; ++i)
{
x[t] = i;
if(Place(t) && Backtrack(t+1))
return true;
}
return false;
}
/*
* QueensLV是整个Las Vegas解n皇后的精髓。而且这个函数不好理解,我在这里具体分析下。
* k是第k行,x[k]表示第k行的皇后放在x[k]列
* 下面这两点解析请认真看了,我个人就是卡在这里半天了,但是理解后很简单。
* 标号①处:这里是遍历第k行所有可以放置的列号,用y保存下来,并用count记录有多少个位置可以放置
* 标号②处:这里利用上面保存的可以放置的列,然后随机取其中一列来放置第k行的皇后。这就是Las Vegas的精髓!
*/
// Author: Tanky Woo
// Blog: www.WuTianQi.com
bool Queen::QueensLV(int stopVegas)
{
// 随机放置n个皇后的拉斯维加斯算法
RandomNumber rnd; // 随机数产生器
int k = 1; // 下一个放置的皇后编号
int count = 1;
// 1 <= stopVegas <= n 表示允许随机放置的皇后数
while((k <= stopVegas) && (count > 0))
{
count = 0;
for(int i = 1; i<=n; ++i) // ----------- ①
{
x[k] = i;
if(Place(k))
y[count++] = i;
}
if(count > 0) // -------------②
x[k++] = y[rnd.Random(count)]; // 随机位置
}
return (count > 0); // count > 0表示放置位置成功
}
Main.cpp主文件:
/*
* Author: Tanky woo
* Blog: www.WuTianQi.com
* Date: 2010.12.9
* 拉斯维加斯(Las Vegas)算法解决N皇后问题
* 代码来至王晓东《计算机算法设计与分析》
*/
#include "Queen.h"
#include "RandomNumber.h"
#include <iostream>
using namespace std;
bool nQueen(int n)
{
// 与回溯法结合的解n后问题的拉斯维加斯算法
Queen X;
// 初始化X
X.n = n;
int *p = new int[n+1];
int *q = new int[n+1];
for(int i=0; i<=n; ++i)
{
p[i] = 0;
q[i] = 0;
}
X.y = q;
X.x = p;
// 设置随机放置皇后的个数
int stop = 8;
if(n > 15)
stop = n-15;
bool found = false;
while(! X.QueensLV(stop));
// 算法的回溯搜索部分
if(X.Backtrack(stop+1))
{
for(int i=1; i<=n; ++i)
cout << p[i] << " ";
found = true;
}
cout << endl;
delete [] p;
delete [] q;
return found;
}
int main()
{
nQueen(8);
}
在8皇后问题中:
1.stopVegas=0表示完全使用回溯法解决问题。因此一定可以得到一组解。
2.stopVegas=8表示完全实用随机法解决问题。因此一定可以得到一组解。
注意书上说解决8皇后问题时,列出了一个不同stopVegas值时,所对应的算法成功率,在stopVegas=8时,他写着是0.1293,我个人认为是错的。接下来我说下自己这么理解的原因:
首先,这个程序为何会造成有失败的情况,那就是因为在随机求出前stopVegas行成立时,不代表后面N-stopVegas行用回溯就可以成立,因为这不是一个彻底的回溯。它是从stopVegas+1行开始计算,回溯不成立最后返回时,也只停留在stopVegas。
而我们在完全随机时,那么它就是反复调用随机位置放置n个皇后的Las Vegas算法,直至放置成功。所以当stopVegas=8时,他的成功率也应该是100%。
另外在stopVegas=3时,成功率等于0.49,趋近于0.5,大家可以试试,基本上每运行两次会有一次回来结果。
如果上面我的理解有错,欢迎大家指出,我的博客(http://www.wutianqi.com/)。
下一篇我会写《随机化算法(5) — 蒙特卡罗(Monte Carlo)算法》。
Tanky Woo原创,欢迎转载,转载请附上链接,请不要私自删除文章内任何关于本博客的链接。