随笔 - 70  文章 - 160  trackbacks - 0

公告:
知识共享许可协议
本博客采用知识共享署名 2.5 中国大陆许可协议进行许可。本博客版权归作者所有,欢迎转载,但未经作者同意不得随机删除文章任何内容,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。 具体操作方式可参考此处。如您有任何疑问或者授权方面的协商,请给我留言。

常用链接

留言簿(8)

随笔档案

文章档案

搜索

  •  

积分与排名

  • 积分 - 177787
  • 排名 - 147

最新评论

阅读排行榜

评论排行榜

建议先看看前言:http://www.cppblog.com/tanky-woo/archive/2011/04/09/143794.html

这一章把前面三篇的代码总结起来,然后推荐一些网上红黑树的优秀讲解资源。

代码:

1
            2
            3
            4
            5
            6
            7
            8
            9
            10
            11
            12
            13
            14
            15
            16
            17
            18
            19
            20
            21
            22
            23
            24
            25
            26
            27
            28
            29
            30
            31
            32
            33
            34
            35
            36
            37
            38
            39
            40
            41
            42
            43
            44
            45
            46
            47
            48
            49
            50
            51
            52
            53
            54
            55
            56
            57
            58
            59
            60
            61
            62
            63
            64
            65
            66
            67
            68
            69
            70
            71
            72
            73
            74
            75
            76
            77
            78
            79
            80
            81
            82
            83
            84
            85
            86
            87
            88
            89
            90
            91
            92
            93
            94
            95
            96
            97
            98
            99
            100
            101
            102
            103
            104
            105
            106
            107
            108
            109
            110
            111
            112
            113
            114
            115
            116
            117
            118
            119
            120
            121
            122
            123
            124
            125
            126
            127
            128
            129
            130
            131
            132
            133
            134
            135
            136
            137
            138
            139
            140
            141
            142
            143
            144
            145
            146
            147
            148
            149
            150
            151
            152
            153
            154
            155
            156
            157
            158
            159
            160
            161
            162
            163
            164
            165
            166
            167
            168
            169
            170
            171
            172
            173
            174
            175
            176
            177
            178
            179
            180
            181
            182
            183
            184
            185
            186
            187
            188
            189
            190
            191
            192
            193
            194
            195
            196
            197
            198
            199
            200
            201
            202
            203
            204
            205
            206
            207
            208
            209
            210
            211
            212
            213
            214
            215
            216
            217
            218
            219
            220
            221
            222
            223
            224
            225
            226
            227
            228
            229
            230
            231
            232
            233
            234
            235
            236
            237
            238
            239
            240
            241
            242
            243
            244
            245
            246
            247
            248
            249
            250
            251
            252
            253
            254
            255
            256
            257
            258
            259
            260
            261
            262
            263
            264
            265
            266
            267
            268
            269
            270
            271
            272
            273
            274
            275
            276
            277
            278
            279
            280
            281
            282
            283
            284
            285
            286
            287
            288
            289
            290
            291
            292
            293
            294
            295
            296
            297
            298
            299
            300
            301
            302
            303
            304
            305
            306
            307
            308
            309
            310
            311
            312
            313
            314
            315
            316
            317
            318
            319
            320
            321
            322
            323
            324
            325
            326
            327
            328
            329
            330
            331
            332
            333
            334
            335
            336
            337
            338
            339
            340
            341
            342
            343
            344
            345
            346
            347
            348
            349
            350
            351
            352
            353
            354
            355
            356
            357
            358
            359
            360
            361
            362
            363
            364
            365
            366
            367
            368
            369
            370
            371
            372
            373
            374
            375
            376
            377
            378
            379
            380
            381
            382
            383
            384
            385
            386
            387
            388
            389
            390
            391
            392
            393
            
/*
            * Author: Tanky Woo
            * Blog:   www.WuTianQi.com
            * Description: 《算法导论》第13章 Red Black Tree
            */
            #include <iostream>
            //#define NULL 0
            using namespace std;
             
            const int RED = 0;
            const int BLACK = 1;
             
            // ①
            typedef struct Node{
            int color;
            int key;
            Node *lchild, *rchild, *parent;
            }Node, *RBTree;
             
            static Node NIL = {BLACK, 0, 0, 0, 0};
             
            #define NULL (&NIL)
             
            // ②
            Node * RBTreeSearch(RBTree T, int k)
            {
            if(T == NULL || k == T->key)
            return T;
            if(k < T->key)
            return RBTreeSearch(T->lchild, k);
            else
            return RBTreeSearch(T->rchild, k);
            }
             
            /*
             
            BSNode * IterativeRBTreeSearch(RBTree T, int k)
            {
            while(T != NULL && k != T->key)
            {
            if(k < T->lchild->key);
            x = T->lchild;
            else
            x = T->rchild;
            }
            return x;
            }
            */
             
            // ③
            Node * RBTreeMinimum(RBTree T)
            {
            while(T->lchild != NULL)
            T = T->lchild;
            return T;
            }
             
            Node * RBTreeMaximum(RBTree T)
            {
            while(T->rchild != NULL)
            T = T->rchild;
            return T;
            }
             
            // ④
            Node *RBTreeSuccessor(Node *x)
            {
            if(x->rchild != NULL)
            return RBTreeMinimum(x->rchild);
            Node *y = x->parent;
            while(y != NULL && x == y->rchild)
            {
            x = y;
            y = y->parent;
            }
            return y;
            }
             
            void LeftRotate(RBTree &T, Node *x)
            {
            Node *y = x->rchild;
            x->rchild = y->lchild;
            if(y->lchild != NULL)
            y->lchild->parent = x;
            y->parent = x->parent;
            if(x->parent == NULL)
            T = y;
            else
            {
            if(x == x->parent->lchild)
            x->parent->lchild = y;
            else
            x->parent->rchild = y;
            }
            y->lchild = x;
            x->parent = y;
            }
             
            void RightRotate(RBTree &T, Node *x)
            {
            Node *y = x->rchild;
            x->rchild = y->lchild;
            if(y->lchild != NULL)
            y->lchild->parent = x;
            y->parent = x->parent;
            if(x->parent == NULL)
            T = y;
            else
            {
            if(x == x->parent->lchild)
            x->parent->lchild = y;
            else
            x->parent->rchild = y;
            }
            y->lchild = x;
            x->parent = y;
            }
             
            // ⑤
            void RBInsertFixup(RBTree &T, Node *z)
            {
            while(z->parent->color == RED)
            {
            if(z->parent == z->parent->parent->lchild)
            {
            Node *y = z->parent->parent->rchild;
            //////////// Case1 //////////////
            if(y->color == RED)
            {
            z->parent->color = BLACK;
            y->color = BLACK;
            z->parent->parent->color = RED;
            z = z->parent->parent;
            }
            else
            {
            ////////////// Case 2 //////////////
            if(z == z->parent->rchild)
            {
            z = z->parent;
            LeftRotate(T, z);
            }
            ////////////// Case 3 //////////////
            z->parent->color = BLACK;
            z->parent->parent->color = RED;
            RightRotate(T, z->parent->parent);
            }
            }
            else
            {
            Node *y = z->parent->parent->lchild;
            if(y->color == RED)
            {
            z->parent->color = BLACK;
            y->color = BLACK;
            z->parent->parent->color = RED;
            z = z->parent->parent;
            }
            else
            {
            if(z == z->parent->lchild)
            {
            z = z->parent;
            RightRotate(T, z);
            }
            z->parent->color = BLACK;
            z->parent->parent->color = RED;
            LeftRotate(T, z->parent->parent);
            }
            }
            }
            T->color = BLACK;
            }
             
            void RBTreeInsert(RBTree &T, int k)
            {
            //T->parent->color = BLACK;
            Node *y = NULL;
            Node *x = T;
            Node *z = new Node;
            z->key = k;
            z->lchild = z->parent = z->rchild = NULL;
             
            while(x != NULL)
            {
            y = x;
             
            if(k < x->key)
            x = x->lchild;
            else
            x = x->rchild;
            }
             
            z->parent = y;
            if(y == NULL)
            {
            T = z;
            T->parent = NULL;
            T->parent->color = BLACK;
            }
            else
            if(k < y->key)
            y->lchild = z;
            else
            y->rchild = z;
            z->lchild = NULL;
            z->rchild = NULL;
            z->color = RED;
            RBInsertFixup(T, z);
            }
             
             
             
            // ⑤
            void RBDeleteFixup(RBTree &T, Node *x)
            {
            while(x != T && x->color == BLACK)
            {
            if(x == x->parent->lchild)
            {
            Node *w = x->parent->rchild;
            ///////////// Case 1 /////////////
            if(w->color == RED)
            {
            w->color = BLACK;
            x->parent->color = RED;
            LeftRotate(T, x->parent);
            w = x->parent->rchild;
            }
            ///////////// Case 2 /////////////
            if(w->lchild->color == BLACK && w->rchild->color == BLACK)
            {
            w->color = RED;
            x = x->parent;
            }
            else
            {
            ///////////// Case 3 /////////////
            if(w->rchild->color == BLACK)
            {
            w->lchild->color = BLACK;
            w->color = RED;
            RightRotate(T, w);
            w = x->parent->rchild;
            }
            ///////////// Case 4 /////////////
            w->color = x->parent->color;
            x->parent->color = BLACK;
            w->rchild->color = BLACK;
            LeftRotate(T, x->parent);
            x = T;
            }
            }
            else
            {
            Node *w = x->parent->lchild;
            if(w->color == RED)
            {
            w->color = BLACK;
            x->parent->color = RED;
            RightRotate(T, x->parent);
            w = x->parent->lchild;
            }
            if(w->lchild->color == BLACK && w->rchild->color == BLACK)
            {
            w->color = RED;
            x = x->parent;
            }
            else
            {
            if(w->lchild->color == BLACK)
            {
            w->rchild->color = BLACK;
            w->color = RED;
            LeftRotate(T, w);
            w = x->parent->lchild;
            }
            w->color = x->parent->color;
            x->parent->color = BLACK;
            w->lchild->color = BLACK;
            RightRotate(T, x->parent);
            x = T;
            }
            }
            }
            x->color = BLACK;
            }
             
            Node* RBTreeDelete(RBTree T, Node *z)
            {
            Node *x, *y;
            // z是要删除的节点,而y是要替换z的节点
            if(z->lchild == NULL || z->rchild == NULL)
            y = z;   // 当要删除的z至多有一个子树,则y=z;
            else
            y = RBTreeSuccessor(z);  // y是z的后继
            if(y->lchild != NULL)
            x = y->lchild;
            else
            x = y->rchild;
            // 无条件执行p[x] = p[y]
            x->parent = y->parent;  //如果y至多只有一个子树,则使y的子树成为y的父亲节点的子树
            if(y->parent == NULL)   // 如果y没有父亲节点,则表示y是根节点,词典其子树x为根节点
            T = x;
            else if(y == y->parent->lchild)
            // 如果y是其父亲节点的左子树,则y的子树x成为其父亲节点的左子树,
            // 否则成为右子树
            y->parent->lchild = x;
            else
            y->parent->rchild = x;
            if(y != z)
            z->key = y->key;
            if(y->color == BLACK)
            RBDeleteFixup(T, x);
            return y;
            }
             
            void InRBTree(RBTree T)
            {
            if(T != NULL)
            {
            InRBTree(T->lchild);
            cout << T->key << " ";
            InRBTree(T->rchild);
            }
            }
             
            void PrintRBTree(RBTree T)
            {
            if(T != NULL)
            {
            PrintRBTree(T->lchild);
            cout << T->key << ": ";
            // 自身的颜色
            if(T->color == 0)
            cout << " Color: RED ";
            else
            cout << " Color: BLACK ";
             
            // 父亲结点的颜色
            if(T == NULL)
            cout << " Parent: BLACK ";
            else
            {
            if(T->color == 0)
            cout << " Parent: RED ";
            else
            cout << " Parent: BLACK ";
            }
             
            // 左儿子结点的颜色
            if(T->lchild == NULL)
            cout << " Lchild: BLACK ";
            else
            {
            if(T->lchild->color == 0)
            cout << " Lchild: RED ";
            else
            cout << " Lchild: BLACK ";
            }
             
            // 右儿子结点的颜色
            if(T->rchild == NULL)
            cout << " Rchild: BLACK ";
            else
            {
            if(T->rchild->color == 0)
            cout << " Rchild: RED ";
            else
            cout << " Rchild: BLACK ";
            }
            cout << endl;
            PrintRBTree(T->rchild);
            }
            }
             
            int main()
            {
            int m;
            RBTree T = NULL;
            for(int i=0; i<9; ++i)
            {
            cin >> m;
            RBTreeInsert(T, m);
            cout << "在红黑树中序查找:";
            InRBTree(T);
            cout << endl;
            }
            PrintRBTree(T);
            cout << "删除根节点后:";
            RBTreeDelete(T, T);
            InRBTree(T);
            }

截图如图:

rbt4

如图显示,这里用到了书上图13-4.可以看到,结点1, 5, 7, 8, 14是黑结点.和图13-4显示一样.

另外,我在学习红黑树的过程中,在网上发现了几个不错的资料,这里给大家推荐下:

天枰座的唐风朋友的:

http://liyiwen.iteye.com/blog/345800

http://liyiwen.iteye.com/blog/345799

wangdei的红黑树算法,附AVL树的比较:

http://wangdei.iteye.com/blog/236157

July的红黑树算法层层剖析与逐步实现:

1、教你透彻了解红黑树
2、红黑树算法的实现与剖析
3、红黑树的c源码实现与剖析
4、一步一图一代码,R-B Tree
5、红黑树插入和删除结点的全程演示
6、红黑树的c++完整实现源码


感谢上面的朋友写的这么好的分析文章。

在我独立博客上的原文:http://www.wutianqi.com/?p=2473

欢迎大家互相学习,互相进步!

posted on 2011-05-12 16:33 Tanky Woo 阅读(2012) 评论(1)  编辑 收藏 引用

FeedBack:
# re: 《算法导论》学习总结 — 15. 第13章 红黑树(4) 2011-05-16 16:25 ray ban
Write well, support you to move on and look forward to your next article.
This article is really great, strong support
  回复  更多评论
  

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理