|
《C++设计新思维》 虽然可能实际中可能用不着,但是可以作为理解模版的特化哦!
//C++模版:编译期检测可转换和可继承 //一般我们使用dynamic_cast<>在运行期进行转化,但是对于模版编程,我们可以实现编译时类型检测。利用了模版技术,sizeof的编译期就可以得到结果和函数的重载技术。
//比如我们检测T是否可以转化为U,我们实现一个函数Test和他的一个重载,函数的参数分别是U和。。。 //参数U和。。。分别对应可以转化为U和不可以转化的情况,然后我们通过对2个重载函数给于不同的返回值,在编译时用sizeof取得不同返回值的大小来判断是否可以转化。
//Determine whether the two types are the same type template<class T, class U> struct IsSameType { enum { value = false }; };
template<class T> struct IsSameType<T, T> { enum { value = true }; };
//Helper that help to determine whether type T can convert to type U template <class T, class U> struct ConversionHelper { typedef char Small; struct Big { char dummy[2]; }; static Big Test(); static Small Test(U); static T MakeT(); };
//我们都知道在C++中,子类的指针可以转化为基类的指针 //判断T是否能够转化为U类型 :T和U是否是同一类型或U是否是T的基类 template<class T, class U> struct Conversion { typedef ConversionHelper<T, U> H;
enum { exists = sizeof(typename H::Small) == sizeof((H::Test(H::MakeT()))) };
enum { exists2Way = exists && Conversion<U, T>::exists };
enum { sameType = false }; };
template <class T> struct Conversion<T, T> { enum { exists = 1, exists2Way = 1, sameType = 1 }; };
template <class T> struct Conversion<void, T> { enum { exists = 0, exists2Way = 0, sameType = 0 }; };
template <class T> struct Conversion<T, void> { enum { exists = 0, exists2Way = 0, sameType = 0 }; };
template <> struct Conversion<void, void> { public: enum { exists = 1, exists2Way = 1, sameType = 1 }; };
//上面BigType和SmallType表示返回结果,他们的sizeof必须不同。 //MakeT()确保不管T的构造函数的私有或共有都有一个零时的T供sizeof使用。
//T是U的基类或T和U是同一类的2个别名。 //注意SuperSubClass传入的模版参数与内部调用Conersion函数的参数传入顺序,在参数前面加了const volatile限定了不能使用重载的类型转化函数。 template <class T, class U> struct SuperSubclass { enum { value = (Conversion<const volatile U*, const volatile T*>::exists && !Conversion<const volatile T*, const volatile void*>::sameType) };
// Dummy enum to make sure that both classes are fully defined. enum{ dontUseWithIncompleteTypes = ( sizeof (T) == sizeof (U) ) }; };
template <> struct SuperSubclass<void, void> { enum { value = false }; };
template <class U> struct SuperSubclass<void, U> { enum { value = (Conversion<const volatile U*, const volatile void*>::exists && !Conversion<const volatile void*, const volatile void*>::sameType) };
// Dummy enum to make sure that both classes are fully defined. enum{ dontUseWithIncompleteTypes = ( 0 == sizeof (U) ) }; };
template <class T> struct SuperSubclass<T, void> { enum { value = (Conversion<const volatile void*, const volatile T*>::exists && !Conversion<const volatile T*, const volatile void*>::sameType) };
// Dummy enum to make sure that both classes are fully defined. enum{ dontUseWithIncompleteTypes = ( sizeof (T) == 0 ) }; };
//T是U的基类 template<class T,class U> struct SuperSubclassStrict { enum { value = (Conversion<const volatile U*, const volatile T*>::exists && !Conversion<const volatile T*, const volatile void*>::sameType && !Conversion<const volatile T*, const volatile U*>::sameType) };
// Dummy enum to make sure that both classes are fully defined. enum{ dontUseWithIncompleteTypes = ( sizeof (T) == sizeof (U) ) }; };
template<> struct SuperSubclassStrict<void, void> { enum { value = false }; };
template<class U> struct SuperSubclassStrict<void, U> { enum { value = (Conversion<const volatile U*, const volatile void*>::exists && !Conversion<const volatile void*, const volatile void*>::sameType && !Conversion<const volatile void*, const volatile U*>::sameType) };
// Dummy enum to make sure that both classes are fully defined. enum{ dontUseWithIncompleteTypes = ( 0 == sizeof (U) ) }; };
template<class T> struct SuperSubclassStrict<T, void> { enum { value = (Conversion<const volatile void*, const volatile T*>::exists && !Conversion<const volatile T*, const volatile void*>::sameType && !Conversion<const volatile T*, const volatile void*>::sameType) };
// Dummy enum to make sure that both classes are fully defined. enum{ dontUseWithIncompleteTypes = ( sizeof (T) == 0 ) }; };
//test classes class CBase {public: int m; };
class CDerived : public CBase { public: int n; };
class COther { public: int o; };
class CConvertToBase { public: int p; public: operator CBase() { CBase obj; return obj; } };
void main() { using namespace std; cout<< Conversion<double, int>::exists << ' ' << Conversion<int, double>::exists2Way<<" " << Conversion<int, double>::sameType<<endl;
cout<< Conversion<char, char*>::exists << ' ' << Conversion<size_t, vector<int> >::exists <<endl;
cout<< "Conversion from CDerived to CBase : "<<Conversion<CDerived,CBase>::exists<<endl; cout<< "Conversion from CBase to CDerived : "<<Conversion<CBase,CDerived>::exists2Way<<endl; cout<<"is CBase and CDerived the same type: "<<Conversion<CBase,CDerived>::sameType<<endl;
cout<< "conversion from CConvertToBase to CBase : "<<Conversion<CConvertToBase,CBase>::exists<<endl; cout<< "Conversion from CConvertToBase to CDerived : "<<Conversion<CConvertToBase,CDerived>::exists<<endl<<endl;
//Is T derived from U std::cout<< "CDerived is the super class or the same class of CBase: "<<SuperSubclass<CDerived, CBase>::value<<std::endl; std::cout << "CBase is the super class or the same class of CDerived: " << SuperSubclass<CBase, CDerived>::value << std::endl; std::cout << "COther is the super class or the same class of CBase:" << SuperSubclass<COther, CBase>::value << std::endl; std::cout << "CBase is the super class or the same class of COther: " << SuperSubclass<CBase, COther>::value << std::endl; std::cout << "CConvertToBase is the super class or the same class of CBase: " << SuperSubclass<CConvertToBase, CBase>::value << std::endl; std::cout << "CBase is the super class or the same class of CConvertToBase: " << SuperSubclass<CBase, CConvertToBase>::value << std::endl; std::cout << "void is the super class or the same class of CBase: " << SuperSubclass<void, CBase>::value << std::endl; std::cout << "COther is the super class or the same class of void: " << SuperSubclass<COther, void>::value << std::endl; std::cout << "void is the super class or the same class of void: " << SuperSubclass<void, void>::value << std::endl; std::cout << "CBase is the super class or the same class of CBase: " << SuperSubclass<CBase, CBase>::value << std::endl;
std::cout << std::endl;
//Is T derived from U, use strict version which exclude the same type std::cout << "CDerived is the super class of CBase : " << SuperSubclassStrict<CDerived, CBase>::value << std::endl; std::cout << "CBase is the super class of CDerived : : " << SuperSubclassStrict<CBase, CDerived>::value << std::endl; std::cout << "COther is the super class of CBase : : " << SuperSubclassStrict<COther, CBase>::value << std::endl; std::cout << "CBase is the super class of COther : : " << SuperSubclassStrict<CBase, COther>::value << std::endl; std::cout << "CConvertToBase is the super class of CBase : : " << SuperSubclassStrict<CConvertToBase, CBase>::value << std::endl; std::cout << "CBase is the super class of CConvertToBase : : " << SuperSubclassStrict<CBase, CConvertToBase>::value << std::endl; std::cout << "void is the super class of CBase : : " << SuperSubclassStrict<void, CBase>::value << std::endl; std::cout << "COther is the super class of void : : " << SuperSubclassStrict<COther, void>::value << std::endl; std::cout << "void is the super class of void : : " << SuperSubclassStrict<void, void>::value << std::endl; std::cout << "CBase is the super class of CBase : : " << SuperSubclassStrict<CBase, CBase>::value << std::endl; } 张张见识哦!~~~
|