posts - 2,  comments - 6,  trackbacks - 0

概述

Map是标准关联式容器associative container)之一,一个map是一个键值对序列,即(key ,value)对。它提供基于key的快速检索能力,在一个map中key值是唯一的。map提供双向迭代器,即有从前往后的(iterator),也有从后往前的(reverse_iterator)。

map要求能对key进行<操作,且保持按key值递增有序,因此map上的迭代器也是递增有序的。如果对于元素并不需要保持有序,可以使用hash_map

map中key值是唯一的,如果马匹中已存在一个键值对(昵称,密码):("skynet",407574364),而我们还想插入一个键值对("skynet",472687789)则会报错不是报错,准确的说是,返回插入不成功!)。而我们又的确想这样做,即一个键对应多个值,幸运的是multimap可是实现这个功能。

下面我们用实例来深入介绍mapmultimap,主要内容如下:

  • 1、例子引入
  • 2、map中的类型定义
  • 3、map中的迭代器和键值对
  • 4、map中的构造函数与析构函数
  • 5、map中的操作方法
  • 6、再议map的插入操作
  • 7、[]不仅插入
  • 8、multimap
  • 9、总结

1、例子引入

有一个服务器manager维护着接入服务器的client信息,包括clinetId、scanRate、socketAddr等等。我们定义一个结构体保存scanRate、socketAddr信息。如下:

typedef    int    clientId;
typedef struct{
int scanRate;
string socketAddr;
}clientInfo;

我们用map保存这些信息:clientId为键key,clientInfo为值。这样我们可以通过clientId快速检索到client的相关信息,我们可以这样定义:

map<clientId,clientInfo> clientMap;

这样我们定义了一个clientMap,如果我们要定义多个这样的map,需要多次写map<clientId,clientInfo> 变量名。为了避免这样情况,我们通常为map<clientId,clientInfo>定义个别名,如:

typedef map<clientId,clientInfo> clientEdp;
clientEdp clientMap;

之后我们就可以像定义clientMap一样定义map<clientId,clientInfo>对象,这样的好处还有:如果我们需要修改map的定义,只需要在一处修改即可,避免修改不彻底造成的不一致现象。

我们这就完成了需要的map的定义,如果不定义或没有在它上面的操作的话,就像定义类而没有方法一样,意义不大或毫无意义。幸运的是,STL提供了这些常用操作:排序(注:map是不能也不要排序的,因为map本身已经排好序了)、打印、提取子部分、移除元素、添加元素、查找对象,就像数据库的增删改查操作!现在我们详细介绍这些操作,并逐步引入hash_mapmultimap

2、map中的类型定义

关联数组(associative array)是最有用的用户定义类型之一,经常内置在语言中用于文本处理等。一个关联数组通常也称为map,有时也称字典(dictionary),保存一对值。第一个值称为key、第二个称为映射值mapped-value。

标准map是定义在std命名空间中的一个模板,并表示为<map>。它首先定义了一组标准类型名字:

template<class Key,class T,class Cmp=less<key>,
class A=allocator<pair<const Key,T>>
class std::map
{
public:
//types
typedef Key    key_type;
typedef T    mapped_type;
typedef pair<const Key,T>    value_type;
typedef    Cmp    key_compare;
typedef A    allocator_type;
typedef    typename    A::reference    reference;
typedef    typename    A::const_reference    const_reference;
typedef    implementation_define1    iterator;
typedef implementation_define2    const_iterator;
typedef    typename    A::size_type    size_type;
typedef    typename    A::difference_type    difference_type;
typedef    std::reverse_iterator<iterator>    reverse_iterator;
typedef    std::reverse_iterator<const_iterator>    const_reverse_iterator;
//...
}

注意:map的value_type是一个(key,value)对,映射值的被认为是mapped_type。因此,一个map是一个pair<const Key,mapped_type>元素的序列。从const Key可以看出,map中键key是不可修改的。

不得不提的是map定义中Cmp和A都是可选项。Cmp是定义在元素之间的比较方法,默认是<操作;A即allocator用来分配释放map总键值对所需使用的内存,没有指定的话即默认使用的是STL提供的,也可以自定义allocator来管理内存的使用。多数情况,我们不指定这两个选项而使用默认值,这样我们定义map就像下面这样:

map<int,clientInfo> clientMap;

Cmp和A都缺省。 通常,实际的迭代器是实现定义的,因为map很像使用了树的形式,这些迭代器通常提供树遍历的某种形式。逆向迭代器是使用标准的reverse_iterator模板构造的。

3、map中的迭代器和键值对

map提供惯常的返回迭代器的一组函数,如下所示:

template<class Key,class T,class Cmp=less<key>,
class A=allocator<pair<const Key,T>>
class std::map
{
public:
//...
//iterators
iterator    begin();
const_iterator    begin()    const;
iterator    end();
const_iterator    end()    const;
reverse_iterator    rbegin();
const_reverse_iterator    rbegin()    const;
reverse_iterator    rend();
const_reverse_iterator    rend()    const;
//...
}

map上的迭代器是pair<const Key,mapped_type>元素序列上简单的迭代。例如,我们可能需要打印出所有的客户端信息,像下面的程序这样。为了实现这个,我们首先向《例子引入》中定义的clientEdp中插入数据,然后打印出来:

#include<iostream>
#include<map>
#include<string>
using namespace std;
typedef    int    clientId;
typedef struct{
int scanRate;
string socketAddr;
}clientInfo;
int main(int argc,char** argv)
{
typedef map<clientId,clientInfo> clientEdp;
typedef map<clientId,clientInfo>::const_iterator iterator;
clientEdp clients;
clientInfo client[100];
char str[10];
string strAddr("socket addr client ");
for(int i=0;i<100;i++)
{
client[i].scanRate=i+1;
//convert int to char*
itoa(i+1,str,10);
//concatenate strAddr and str
client[i].socketAddr=strAddr+str;
cout<<client[i].socketAddr<<endl;
clients.insert(
make_pair(i+1,client[i]));
}
delete str;
for(iterator i=clients.begin();i!=clients.end();i++)
{
cout<<"clientId:"<<i->first<<endl;
cout<<"scanRate:"<<i->second.scanRate<<endl;
cout<<"socketAddr:"<<i->second.socketAddr<<endl;
cout<<endl;
}
}

一个map迭代器以key升序方式表示元素,因此客户端信息以cliendId升序的方式输出。运行结果可以证明这一点,运行结果如下所示:

image

图1、程序运行结果

我们以first引用键值对的key,以second引用mapped value,且不用管key和mapped value是什么类型。其实pair在std的模板中是这样定义的:

template <class    T1,class T2>struct std::pair{
typedef    T1    first_type;
typedef    T2    second_type;
T1    first;
T2    second;
pair():first(T1()),second(T2()){}
pair(const T1& x,const T2& y):first(x),second(y){}
template<class U,class V>
pair(const pair<U,V>& p):first(p.first),second(p.second){}
}

即map中,key是键值对的第一个元素且mapped value是第二个元素。pair的定义可以在<utility>中找到,pair提供了一个方法方便创建键值对:

template <class T1,class T2>pair<T1,T2>
std::make_pair(const T1& t1,const T2& t2)
{
return pair<T1,T2>(t1,t2);
}

上面的例子中我们就用到了这个方法来创建(clientId,clientInfo)对,并作为Insert()方法的参数。每个pair默认初始化每个元素的值为对应类型的默认值。

4、map中的构造函数与析构函数

map类惯常提供了构造函数和析构函数,如下所示:

template<class Key,class T,class Cmp=less<key>,
class A=allocator<pair<const Key,T>>
class std::map
{
//...
//construct/copy/destroy
explicit map(const Cmp&=Cmp(),const A&=A());
template<class In>map(In first,In last,
const Com&=Cmp(),const A&=A());
map(const map&);
~map();
map& operator=(const map&);
//...
}

复制一个容器意味着为它的每个元素分配空间,并拷贝每个元素值。这样做是性能开销是很大的,应该仅当需要的时候才这样做。因此,map传的是引用

5、map中的操作方法

前面我们已经说过,如果map中仅定义了一些key、mapped value类型的信息而没有操作方法,就如定义个仅有字段的类意义不大甚至毫无意义。由此可见map中定义操作方法非常重要!前面的例子我们就用到了不少方法,如返回迭代器的方法begin()、end(),键值对插入方法insert()。下面我们对map中的操作方法做个全面的介绍:

template<class Key,class T,class Cmp=less<key>,
class A=allocator<pair<const Key,T>>
class std::map
{
//...
//map operations
//find element with key k
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
//find number of elements with key k
size_type count() const;
//find first element with key k
iterator lower_bound(const key_type& k);
const_iterator lower_bound(const key_type& k) const;
//find first element with key greater than k
iterator upper_bound(const key_type& k);
const_iterator upper_bound(const key_type& k) const;
//insert pair(key,value)
pair<iterator,bool>insert(const value_type& val);
iterator insert(iterator pos,const value_type& val);
template<class In>void insert(In first,In last);
//erase element
void erase(iterator pos);
size_type erase(const key_type& k);
void erase(iterator first,iterator last);
void clear();
//number os elements
size_type size() const;
//size of largest possible map
size_type max_size() const;
bool empty() const{return size()==0;}
void swap(map&);
//...
}

上面这些方法基本都能顾名思义(PS.由此可见,命名有多重要,我们平时要养成好的命名习惯,当然注释也必不可少!)。虽然已经非常清楚了了,但我还是想讲解一下以消除不惜要的误解和更好地应用这些方法。

  • find(k)方法简单地返回键值为k的元素的迭代器;如果没有元素的键值为k,则返回map的end()迭代器。由于map是按键key升序排列,所有查找的复杂度只有O(logN)。因此,我们通常会这样用这个方法:
    #include<iostream>
        #include<map>
        #include<string>
        using namespace std;
        typedef    int    clientId;
        typedef struct{
        int scanRate;
        string socketAddr;
        }clientInfo;
        int main(int argc,char** argv)
        {
        typedef map<clientId,clientInfo> clientEdp;
        typedef map<clientId,clientInfo>::const_iterator iterator;
        clientEdp clients;
        clientInfo client[100];
        char* str=new char[10];
        string strAddr("socket addr client ");
        for(int i=0;i<100;i++)
        {
        client[i].scanRate=i+1;
        //convert int to char*
        itoa(i+1,str,10);
        //concatenate strAddr and str
        client[i].socketAddr=strAddr+str;
        clients.insert(
        make_pair(i+1,client[i]));
        }
        delete str;
            clientId id=10;
        iterator i=clients.find(id);
        if(i!=clients.end()){
        cout<<"clientId: "<<id
        <<" exists in clients"<<endl;
        }
        else{
        cout<<"clientId: "<<id
        <<" doesn't exist in clients"<<endl;
        }
        }
  • insert()方法 试图将一个(Key,T)键值对加入map。因为键时唯一的,所以仅当map中不存在键值为k的键值对时插入才成功。该方法的返回值为pair<iterator,bool>,如果插入成功bool值为TRUE,iterator指向插入map中后的键值对。如下代码:
    #include<iostream>
        #include<map>
        #include<string>
        using namespace std;
        typedef    int    clientId;
        typedef struct{
        int scanRate;
        string socketAddr;
        }clientInfo;
        int main(int argc,char** argv)
        {
        typedef map<clientId,clientInfo> clientEdp;
        typedef map<clientId,clientInfo>::const_iterator iterator;
        clientEdp clients;
        clientId id=110;
        clientInfo cltInfo;
        cltInfo.scanRate=10;
        cltInfo.socketAddr="110";
        pair<clientId,clientInfo> p110(id,cltInfo);
        pair<iterator,bool> p=clients.insert(p110);
        if(p.second){
        cout<<"insert success!"<<endl;
        }
        else{
        cout<<"insert failed!"<<endl;
        }
        //i points to clients[110];
        iterator i=p.first;
        cout<<i->first<<endl;
        cout<<i->second.scanRate<<endl;
        cout<<i->second.socketAddr<<endl;
        }

上面我们看出,这里我们插入键值对是首先声明一个键值对pair<clientId,clientInfo> p110(id,cltInfo); 然后再插入,这个我们之前make_pair方法不一样,make_pair方法用的比较多。

  • erase()方法用法比较简单,比如像清除clientId为110的键值对,我们只需要对clients调用erase方法:clients.erase(clients.find(110));或者我们想清除clientId从1到10的键值对,我们可以这样调用erase()方法:clients.erase(clients.finds(1),clients.find(10));简单吧!别得意,你还需要注意,如果find(k)返回的是end(),这样调用erase()方法则是一个严重的错误,会对map造成破坏操作。

6、再议map的插入操作

前面我们介绍了利用map的插入方法insert(),声明键值对pair或make_pair生成键值对然后我们可以轻松的将键值对插入map中。其实map还提供了更方便的插入操作利用下标(subscripting,[])操作,如下:

clientInfo cltInfo;
cltInfo.scanRate=10;
cltInfo.socketAddr="110";
clients[110]=cltInfo;

这样我们就可以简单地将键值对插入到map中了。下标操作在map中式这样定义的:

template<class Key,class T,class Cmp=less<key>,
class A=allocator<pair<const Key,T>>
class std::map
{
//...
//access element with key k
mapped_type& operator[](const key_type& k);
//...
}

我们来分析一下应用[]操作,插入键值对的过程:检查键k是否已经在map里。如果不,就添加上,以v作为它的对应值。如果k已经在map里,它的关联值被更新成v。这里首先,查找110不在map中则创建一个键为110的键值对,并将映射值设为默认值,这里scanRate为0,socketAddr为空;然后将映射值赋为cltInfo。 如果110在map中已经存在的话,则只是更新以110为键的映射值。

从上面的分析可知:如果大量这样插入数据,会严重影响效率!如果你考虑效率问题,请使用insert操作。insert方法,节省了三次函数调用:一个建立临时的默认映射值的对象,一个销毁那个临时的对象和一个对映射值的赋值操作。

Note1:如果k已经存在map中,[]效率反而比insert的效率高,而且更美观!如果能够兼顾这两者那岂不是很美妙!其实我们重写map中的[]操作:首先判断k是否已经在map中,如果没有则调用insert操作,否则调用内置的[]操作。如下列代码:

//////////////////////////////////////////////
///@param MapType-map的类型参数
///@param KeyArgType-键的类型参数
///@param ValueArgtype-映射值的类型参数
///@return 迭代器,指向键为k的键值对
//////////////////////////////////////////////
template<typename MapType,
typename KeyArgType,
typename ValueArgtype>
typename MapType::iterator
efficientAddOrUpdate(MapType& m,
const KeyArgType& k,
const ValueArgtype& v)
{
typename MapType::iterator Ib =    m.lower_bound(k);
if(Ib != m.end()&&!(m.key_comp()(k,Ib->first))) {
//key已经存在于map中做更新操作
Ib->second = v;
return Ib;
}
else{
//key不存在map中做插入操作
typedef typename MapType::value_type MVT;
return m.insert(Ib, MVT(k, v));
}
}

Note2:我们视乎还忽略了一点,如果映射值mapped value的类型没有默认值,怎么办?这种情况请勿使用[]操作插入。

7、[]不仅插入

通过[]操作不仅仅是插入键值对,我们也可以通过键key检索出映射值mapped value。而且我们利用[]操作可以轻松地统计信息,如有这样这样一些键值对(book-name,count)对:

(book1,1)、(book2,2)、(book1,2)、(book3,1)、(book3,5)

我们计算每种book的数量总和。我们可以这样做:将它们读入一个map<string,int>:

#include<iostream>
#include<map>
#include<string>
using namespace std;
int main(int argc,char** argv)
{
map<string,int> bookMap;
string book;
int count;
int total=0;
while(cin>>book>>count)
bookMap[book]+=count;
map<string,int>::iterator i;
for(i=bookMap.begin();i!=bookMap.end();i++)
{
total+=i->second;
cout<<i->first<<'\t'<<i->second<<endl;
}
cout<<"total count:"<<total<<endl;
}

结果如下所示:(注意按住ctrl+z键结束输入)

image

图2、程序运行结果

8、multimap

前面介绍了map,可以说已经非常清晰了。如果允许clientId重复的话,map就无能为力了,这时候就得multimap上场了!multimap允许键key重复,即一个键对应多个映射值。其实除此之外,multimap跟map是很像的,我们接下来在map的基础上介绍multimap。

multimap在std中的定义跟map一样只是类名为multimap,multimap几乎有map的所有方法和类型定义。

  • multimap不支持[]操作;但map支持
  • multimap的insert方法返回的是一个迭代器iterator,没有bool值;而map值(iterator,bool)的元素对
  • 对应equal_range()、方法:
    pair<iterator,iterator> equal_range(const key_type& k);
        pair<const_iterator,const_iterator>
        equal_range(const key_type& k) const;
        //find first element with key k
        iterator lower_bound(const key_type& k);
        const_iterator lower_bound(const key_type& k) const;
        //find first element with key greater than k
        iterator upper_bound(const key_type& k);
        const_iterator upper_bound(const key_type& k) const;
    虽然在map和multimap都有,显然对multimap有更多的意义!equal_range()方法返回一个键key对应的多个映射值的上界和下界的键值对的迭代器、lower_bound()方法返回键multimap中第一个箭为key的键值对迭代器、upper_bound()方法返回比key大的第一个键值对迭代器。

假设我们想取出键为key的所有映射值,我们可以这样做:

#include<iostream>
#include<map>
#include<string>
using namespace std;
typedef int clientId;
typedef struct{
int scanRate;
string socketAddr;
}clientInfo;
int main(int argc,char** argv)
{
typedef multimap<clientId,clientInfo> clientEdp;
typedef multimap<clientId,clientInfo>::const_iterator iterator;
clientEdp clients;
clientInfo client[20];
char* str=new char[10];
string strAddr("socket addr client ");
for(int i=0;i<10;i++)
{
client[i].scanRate=i+1;
//convert int to char*
itoa(i+1,str,10);
//concatenate strAddr and str
client[i].socketAddr=strAddr+str;
clients.insert(
make_pair(10,client[i]));
}
for(int i=10;i<20;i++)
{
client[i].scanRate=i+1;
//convert int to char*
itoa(i+1,str,10);
//concatenate strAddr and str
client[i].socketAddr=strAddr+str;
clients.insert(
make_pair(i+1,client[i]));
}
delete str,strAddr;
    //find elements with key 10
iterator lb=clients.lower_bound(10);
iterator ub=clients.upper_bound(10);
for(iterator i=lb;i!=ub;i++)
{
cout<<"clientId:"<<i->first<<endl;
cout<<"scanRate:"<<i->second.scanRate<<endl;
cout<<"socketAddr:"<<i->second.socketAddr<<endl;
cout<<endl;
}
}

(说明:实际上,一般是不允许clientId重复的,这里只是为了举例。)这样是不是感觉很丑呢!事实上,我们可以更简单的这样:

//find elements with key 10
pair<iterator,iterator> p=clients.equal_range(10);
for(iterator i=p.first;i!=p.second;i++)
{
cout<<"clientId:"<<i->first<<endl;
cout<<"scanRate:"<<i->second.scanRate<<endl;
cout<<"socketAddr:"<<i->second.socketAddr<<endl;
cout<<endl;
}

总结

map是一类关联式容器。它的特点是增加和删除节点对迭代器的影响很小,除了那个操作节点,对其他的节点都没有什么影响。对于迭代器来说,可以修改实值,而不能修改key。

map的功能:

  • 自动建立Key -value的对应。key 和value可以是任意你需要的类型。
  • 根据key值快速查找记录,查找的复杂度基本是Log(N)。
  • 快速插入Key - Value 记录。
  • 快速删除记录
  • 根据Key 修改value记录。
  • 遍历所有记录。

展望:本文不知不觉写了不少字了,但仍未深入涉及到map定义的第3个和第4个参数,使用的都是默认值。

template<class Key,class T,class Cmp=less<key>,
    class A=allocator<pair<const Key,T>>

感兴趣者,请查找相关资料or下面留言希望看到单独开篇介绍map第3个和第4个参数。您的支持,我的动力!PS:在此文的原因,在与公司做项目用到了map特此总结出来与大家共享,不过在进行个人总结过程中,难免会有疏漏或不当之处,请不吝指出。

参考文献:

【1】《The C++ Programming Language (Special Edition)》

【2】《Effective STL》

posted on 2010-06-19 12:25 吴秦(Saylor) 阅读(4413) 评论(6)  编辑 收藏 引用 所属分类: C/C++ Internals

FeedBack:
# re: C++ Internals: STL之Map[未登录]
2010-06-19 20:46 | david
没认真看完,不过荏苒期待下一篇好文  回复  更多评论
  
# re: C++ Internals: STL之Map
2010-06-20 18:42 | aaac
不知道作者写这种文章有啥意义,感觉空洞无物,浪费时间,既浪费作者的时间也浪费读者的时间。
  回复  更多评论
  
# re: C++ Internals: STL之Map
2010-06-21 18:08 | mtian
char str[10];
..........................
delete str;

这个,似乎不是平常用的方法啊。
  回复  更多评论
  
# re: C++ Internals: STL之Map
2010-06-21 18:21 | mtian
"现在我们详细介绍这些操作,并逐步引入hash_map、multimap"


hash_map还没说呢。  回复  更多评论
  
# re: C++ Internals: STL之Map[未登录]
2010-06-25 14:41 | worm
慢慢看咯,敬佩楼主  回复  更多评论
  
# re: C++ Internals: STL之Map[未登录]
2014-01-17 23:50 | 1
很有用
  回复  更多评论
  

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理



<2025年1月>
2930311234
567891011
12131415161718
19202122232425
2627282930311
2345678

常用链接

留言簿

随笔分类(1)

随笔档案(2)

搜索

  •  

最新评论

阅读排行榜

评论排行榜