C++ Coder

HCP高性能计算架构,实现,编译器指令优化,算法优化, LLVM CLANG OpenCL CUDA OpenACC C++AMP OpenMP MPI

C++博客 首页 新随笔 联系 聚合 管理
  98 Posts :: 0 Stories :: 0 Comments :: 0 Trackbacks
http://devgurus.amd.com/thread/158866

VLIW on Cypress and vector addition

此问题被 假设已回答。

cadorinoNewbie
cadorino 2012-7-2 上午10:31

Hi to everybody.
I'm thinking about VLIW utilization on a 5870 HD.

Suppose you have the following kernel:

 

__kernel void saxpy(const __global float * x, __global float * y, const float a)

{

          uint guid = get_global_id(0);

                    y[guid] = a * x[guid] + y[guid];

}

 

Each work item operates on a single vector element and no vectorization (float4).
Is the compiler still capable of packing instructions to exploit the 4 ALUs of each processing element?

Is there any tool to determine the way instructions are packed into VLIW?

 

Thank you very much!

  • 633 浏览次数
  • Re: VLIW on Cypress and vector addition
    MicahVillmowModerator
    MicahVillmow 2012-7-2 上午10:44 (回复 cadorino)

    The compiler only packs the VLIW with computation within a work-item, not across work-items. Multicore ware has some software that will allow you to pack across work-items, which can be found here:http://www.multicorewareinc.com/index.php?option=com_content&view=article&id=71&Itemid=106

    Micah Villmow
    Advanced Micro Devices Inc.
    --------------------------------
    The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors. Links to third party sites are for convenience only, and no endorsement is implied.
    • Re: VLIW on Cypress and vector addition
      cadorinoNewbie
      cadorino 2012-7-2 上午11:18 (回复 MicahVillmow)

      Ok, so what if there are not enough alu instructions per work-item to be packed to exploit the 4 ALUs?

      • Re: VLIW on Cypress and vector addition
        MicahVillmowModerator
        MicahVillmow 2012-7-2 上午11:27 (回复 cadorino)

        Then your program is not utilizing the entire machine and cannot reach peak efficiency.

        Micah Villmow
        Advanced Micro Devices Inc.
        --------------------------------
        The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors. Links to third party sites are for convenience only, and no endorsement is implied.
        • Re: VLIW on Cypress and vector addition
          cadorinoNewbie
          cadorino 2012-7-2 下午1:00 (回复 MicahVillmow)

          Ok, so it is possible for a PE to get a VLIW containing less than 4 operations, and in this case some ALUs are idle. Right?

        • Re: VLIW on Cypress and vector addition
          cadorinoNewbie
          cadorino 2012-7-2 下午1:00 (回复 MicahVillmow)

          Ok, so it is possible for a PE to get a VLIW containing less than 4 operations, and in this case some ALUs are idle. Right?

          • Re: VLIW on Cypress and vector addition
            realhetNovice
            realhet 2012-7-3 上午3:05 (回复 cadorino)

            Peak efficiency is only when all your 4 or 5 ALUs have work to do in every cycles.

            If you disassemble your code (use kernel analyzer), you can easily spot the idle ALUs.

             

            for example:

            10  x: SUB_INT     T0.x,  PV9.z,  KC0[2].x

                       w: SETGE_UINT  ____,  PV9.z,  KC0[2].x    ;y,z,t sleeps

            11  z: AND_INT     ____,  T0.y,  PV10.w              ;x,y,w,t sleeps

            12  y: CNDE_INT    T1.y,  PV11.z,  T0.z,  T0.x     ;x,z,w,t sleeps

            13  x: ADD_INT     ____,  KC0[2].x,  PV12.y        ;y,z,w,t sleeps

            this is so unoptimal that is does only 5 operations under 4 clocks, the possible maximum would be 4*5=20 operations (on vliw5)

             

            826  x: XOR_INT     T1.x,  R28.w,  T0.w

                         y: SETGT_UINT  ____,  T1.x,  T0.w

                         z: XOR_INT     T3.z,  KC0[13].z,  R20.y      VEC_021

                         w: SETGT_UINT  T2.w,  T2.w,  R15.y      VEC_201

                         t: SETGT_UINT  T0.w,  R9.x,  T1.y

            827  x: ADD_INT     ____,  T0.z,  T2.z

                         y: ADD_INT     T2.y,  T0.y,  T2.x      VEC_021

                         z: ADD_INT     T0.z,  T1.z,  T2.y      VEC_210

                         w: ADD_INT     ____,  PV826.y,  T3.y      VEC_021

                         t: SETGT_UINT  ____,  T3.w,  R5.x

            this one is maximum utilization. 10 operationc in 2 clocks.

             

            There are tricks to improve local paralellism in code (other than simply vectorizing everything) like breaking dependency chains:

            for example  a+b+c+d  -> (a+b)+(c+d)

            • Re: VLIW on Cypress and vector addition
              nouExpert
              nou 2012-7-3 上午4:06 (回复 realhet)

              or you can proceed 2-4 work items in one work item. like this. but it has disadvantage as it increase register usage.

              __kernel void saxpy(const __global float * x, __global float * y, const float a)

              {

                        uint guid = get_global_id(0);

                             for(int i=0;i<4;i++)

                                  y[guid*4+1] = a * x[guid*4+i] + y[guid*4+i];

              }

  • Re: VLIW on Cypress and vector addition
    kbraffordNovice
    kbrafford 2012-7-3 下午12:24 (回复 cadorino)

    If he rewrote the kernel to use float4 types, would that also cause MMX/SSE registers to be used with compiled for a CPU device?

     

    __kernel void saxpy(const __global float4 * x, __global float4 * y, const float a)

    {

              uint guid = get_global_id(0);

     

              y[guid] = (float4)a * x[guid] + y[guid];

    }

    • Re: VLIW on Cypress and vector addition
      nouExpert
      nou 2012-7-3 下午1:58 (回复 kbrafford)

      yes you need use explicit vector types to utilize SSE instructions on CPU with AMD OpenCL

      • Re: VLIW on Cypress and vector addition
        cadorinoNewbie
        cadorino 2012-7-3 下午7:48 (回复 nou)

        Thank you very much you all, your answers are really useful!
        I already wrote a float4 version of the kernel, but I posted the float version since I'm trying to get into details of low-level aspects of VLIW compilation and execution.

         

        For what regards vectorized types, I agree that on CPU this enables SSE execution. Bu what for GPUs? For example, is the sum of two float4 elements spread across the 4 ALUs or the sum of each component is executed sequentially on a single ALU?

        • Re: VLIW on Cypress and vector addition
          nouExpert
          nou 2012-7-3 下午11:34 (回复 cadorino)

          I am not entirely sure what you mean with single ALU. but one workitem is executed only on one 5D/4D unit. and you will get packed instruction if is there enough independent instructions.

        • Re: VLIW on Cypress and vector addition
          realhetNovice
          realhet 2012-7-4 上午1:26 (回复 cadorino)

          On hd6xxx there are 4 physical ALUs for each workitems. The compiler will schedule operations for each of the ALUs on every single clocks. Also the compiler must ensure that there are no data dependency across the ALUs (eg. ALU x cannot use the result from ALU y in a single clock).

          In our case [Very Large Instruction Word] means that one instruction contains at most 4 subinstructions for each of the four ALUs.

           

          If it's not complicated enough: on the HD4xxx,5xxx there is a fifth ALU which handles the complicated instructions. So 4 ALUs can do simple math like mul, add, and the 5th can handle special things like cos().

           

          SSE is SIMD. It means one instruction will do the same operation on 4 different datas. SIMD can interpreted as a special case of VLIW where all ALU's have to do the same operation on data packed into vectors (eg. float4)

           

          GCN architecture dropped VLIW. On that a simple sequential code which even contains long dependency chains will do fine. So there is no need to have 4 or 5 independent execution paths in your algo, but for maximum utilization you'll have to feed it with 4x more workitems.

           

          (you know, the example code here is rather theoretical: Its bottleneck is memory IO, all the ALUs are sleeping and waiting for the memory units. Also the hardest ALU calculation is not the a*b+c (1 mad instruction) but get_global_id(0) (modulo/rangecheck/add operations) and address calculations for the 3 indirectly addressed buffers.)

          • Re: VLIW on Cypress and vector addition
            cadorinoNewbie
            cadorino 2012-7-4 下午3:01 (回复 realhet)

            Great answer! Thank you 
            So, summarizing, the grouping of instructions may allow to exploit all the 4/5 ALUs and this exploitation depends on the program and on the compiler. 

          • Re: VLIW on Cypress and vector addition
            bridgmanNewbie
            bridgman 2012-7-4 下午7:31 (回复 realhet)

            >>On hd6xxx there are 4 physical ALUs for each workitems.

             

            It's actually only the hd69xx (and Trinity) which use VLIW4. The rest of the hd6xxx family uses VLIW5, similar to the earlier parts.

             

            The GCN parts (hd77xx and higher) use 4 scalar SIMDs in a CU rather than 1 VLIW4 SIMD.

            The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors. Links to third party sites are for convenience only, and no endorsement is implied.
  • Re: VLIW on Cypress and vector addition
    cadorinoNewbie
    cadorino 2012-7-5 上午6:46 (回复 cadorino)

    Great topic. I would like to ask you another thing without starting another topic.
    Given a disassembled kernel like:

     

    00 ALU: ADDR(32) CNT(11) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

          0  t: MULLO_INT   ____,  R1.x,  KC0[1].x     

          1  x: ADD_INT     ____,  R0.x,  PS0     

          2  w: ADD_INT     ____,  PV1.x,  KC0[6].x     

          3  z: LSHL        ____,  PV2.w,  2     

          4  y: ADD_INT     ____,  KC1[0].x,  PV3.z     

             z: ADD_INT     ____,  KC1[1].x,  PV3.z     

          5  x: LSHR        R2.x,  PV4.z,  2     

             y: LSHR        R0.y,  PV4.z,  2     

             w: LSHR        R0.w,  PV4.y,  2     

    01 TEX: ADDR(48) CNT(2)

          6  VFETCH R0.x___, R0.w, fc153  MEGA(4)

             FETCH_TYPE(NO_INDEX_OFFSET)

          7  VFETCH R1.x___, R0.y, fc153  MEGA(4)

             FETCH_TYPE(NO_INDEX_OFFSET)

    02 ALU: ADDR(43) CNT(1) KCACHE0(CB1:0-15)

          8  x: MULADD_e    R0.x,  KC0[2].x,  R0.x,  R1.x     

    03 MEM_RAT_CACHELESS_STORE_RAW: RAT(11)[R2].x___, R0, ARRAY_SIZE(4)  MARK  VPM

    END_OF_PROGRAM

     

    can I assume that each instruction 0 - 8 is executed in a clock cycle?

    In the example I've 9 instructions. Can I say that they take 9 cycles to get executed? (obviously, after the fetch clause the wavefront will be switched off until data is available, but I'm referring exclusively to executing instructions, ignoring the time spent in waiting for memory accesses to complete)

    • Re: VLIW on Cypress and vector addition
      realhetNovice
      realhet 2012-7-5 上午7:51 (回复 cadorino)

      yes, the first ALU clause takes 6 core clock cycles and the second takes one.

      But these are relatively small clauses interleaved with memory clauses so there are lots of penalties at the transitions of the clauses.

      Ideally alu clauses can hold 128 slots but these are small ones.

       

      Lets say you have 2 wavefronts A,B and C assigned to a compute unit:

      ALU               memory unit

      A: 00 ALU       idle

      B: 00 ALU       A: 01 TEX

      C: 00 ALU       A: 01 TEX still (it's slow operation compared to small ALU stuff)

      A: 02 ALU       B: 01 TEX

      idle                 B: 01 TEX still

      B: 02 ALU       A: 03 MEM

      idle                 C: 01 TEX

      idle                 C: 01 TEX still

      C: 02 ALU       B: 03 MEM

      idle                 C: 03 MEM

       

      (oups maybe the memory output unit is separated from the texture unit but it's only an illustration of how the different parts of a compute unit can work in paralell)

      (and the compiler did a good job compiling that MULADD into one instruction)

posted on 2013-01-09 16:37 jackdong 阅读(465) 评论(0)  编辑 收藏 引用 所属分类: OpenCL

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理