posts - 7,comments - 3,trackbacks - 0

NumberPyramids

Time Limit: 20 Sec  Memory Limit: 128 MB
Submissions: 103  Solved: 41

Description

 

Suppose that there are N numbers written in a row. A row above this one consists of N-1 numbers, the i-th of which is the sum of the i-th and (i+1)-th elements of the first row. Every next row contains one number less than the previous one and every element is the sum of the two corresponding elements in the row below. The N-th row contains a single number. For example, if the initial numbers are {2,1,2,4}, the whole structure will look like this:

15
6 9
3 3 6
2 1 2 4

We shall refer to such a structure as a number pyramid. Two number pyramids are equal if all the numbers at corresponding positions are equal. Given ints baseLength and top, compute the total number of different number pyramids consisting of positive integers, having baseLength elements in the first row and the value at the top equal to top. Since the number of such pyramids might be enormous, return the result modulo 1,000,000,009.

 

Input

 

Two numbers -- baseLength and top.
baseLengthwill be between 2 and 1,000,000, inclusive.
topwill be between 1 and 1,000,000, inclusive.

 

Output

 

The total number of different number pyramids Constraints

 

Sample Input

3 5
5 16
4 15
15 31556
150 500

Sample Output

2
1
24
74280915
0

HINT

 

1) The following are two possible pyramids with 3 numbers in the base and the number 5 at the top:

2) The only number pyramid with base of size 5 and 16 at the top looks like this:

 

Source

Topcoder SRM





非常V5的一道题,一开是以为但是DP,1,000,000的数据范围真的有点不能接受......
看了一个大牛的题解,用数论证明了这个题可以转化成多重背包.....

思路:
首先,我们可以证明金字塔最顶端的数和最低端的数是有关系的,关系就是
C0N-1*a0 + C1N-1*a1 + C2n-1*a2 + ...... Cn-1n-1*an-1 = T      (1)

而且因为T <= 1,000,000。可以推出n最大是20.....
继续观察上述(1),因为必须符合金字塔,所以a序列都至少为1,所以,我们可以发现,先用T减去每个系数(因为至少一次),之后用那n-1个数做多重背包,求T的方案就行了。

复杂度是(N * 1,000,000),可以接受。

代码:
#include <cstdio>
#include 
<cstring>
#include 
<iostream>
using namespace std;

const int mod = 1000000009;
int dp[1000100];
int n, top;
int c[21][21];
void init()
{
    
for (int i = 1; i < 21++i)
    {
        c[i][
0= c[i][i]  = 1;
        c[i][
1= c[i][i - 1= i;
        
for (int j = 2; j < i - 1++j)
        {
            c[i][j] 
= c[i - 1][j] + c[i - 1][j - 1];
        }
    }
}

int work(int n, int top)
{
    
if (n > 20return 0;
    
if (1 << (n - 1> top) return 0;
    top 
-= 1 << (n - 1);
    memset(dp, 
0sizeof(dp));
    dp[
0= 1;
    
for (int i = 0; i <= n - 1++i)
    {
        
for (int k = 0; k <= top; ++k)
        {
            
if ((dp[k] && k + c[n - 1][i] <= top) || k == 0)
            {
                dp[k 
+ c[n - 1][i]] = (dp[k + c[n - 1][i]] + dp[k]) % mod;
            }
        }
    }
    
return dp[top];
}

int main()
{
    memset(c, 
-1sizeof(c));
    init();
    
while (scanf("%d%d"&n, &top) != EOF)
    {
        printf(
"%d\n", work(n ,top));
    }
    
return 0;
}

posted on 2011-10-15 22:15 LLawliet 阅读(103) 评论(0)  编辑 收藏 引用 所属分类: 动态规划

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理