posts - 7,comments - 3,trackbacks - 0

Max Xor Sub-sequence II 
Time Limit:1000MS  Memory Limit:32768K

Description:

Give you a sequence of integer numbers which are 1 or 0. You are to find the number of consecutive sub-sequence, which the xor value between all these numbers has the maximum value. The first number of the sequence is 1 and the last is 1. There are (n+1) 1’s in the sequence. N numbers will be given. The i-th number is the index of (i+1)-th 1 minus the index of i-th 1. For example: if the sequence is 1010100010001, 4 2 2 4 4 will be given.

 

Input:

There are multiple cases. For each case: Line 1: A single integer N (1<=N<=20000). Followed N integers ranging from 1 to 20000.

Output:

For each case output the result in a single line.

Sample Input:

4
2 2 4 4
5
3 1 2 4 5

Sample Output:

49
70

Hint:

1.1 ^ 1 = 0, 1 ^ 0 = 1, 0 ^ 1 = 1, 0 ^ 0 = 0. 2.In the example, sub-sequence 10 has the maximum value ‘cause 1 xor 0 = 1;the same as 10101, 1010100010001, and so on.

算不上DP的DP......就是处理01串的奇偶性.....
DP[i][j]表示第i个1,j有6种情况。
dp[i][0] = dp[i - 1][1] 表示偶数个1,且最后一个1在末尾。
dp[i][1] = dp[i - 1][0] + dis 表示奇数个1,且最后一个1在末尾。
dp[i][2] = f[i - 1][2] + f[i - 1][0] 表示偶数个1,且最后一个1不在末尾。
dp[i][3] = f[i  - 1][3] + f[i - 1][1] 表示偶数个1,且最后一个1不在末尾。
dp[i][4] = f[i - 1][4] + (dis - 1) * f[i - 1][0] 表示偶数个1,且最后一个是0不在末尾。
dp[i][5] = f[i - 1][5] + (dis - 1) * f[i - 1][0] 表示偶数个1,且最后一个是0不在末尾。
上面六个关系式列举了所以情况,但是只用到了(dp[i][0], dp[i][1], dp[i][3], dp[i][5])四个式子。

友情提示,ans是超过int的,用long long吧,我因为这个吃了三次WA.....

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

int main()
{
    long long dp[20010][7];
    long long n;
    long long dis;
    while (cin >> n)
    {
        memset(dp, 0, sizeof(dp));
        dp[1][0] = 0;
        dp[1][1] = 1;
        for (long long i = 2; i <= n + 1; ++i)
        {
            cin >> dis;
            dp[i][0] = dp[i - 1][1];
            dp[i][1] = dp[i - 1][0] + dis;
            dp[i][3] = dp[i - 1][3] + dp[i - 1][1];
            dp[i][5] = dp[i - 1][5] + (dis - 1) * dp[i - 1][1];
        }
        cout << dp[n + 1][1] + dp[n + 1][3] + dp[n + 1][5] << endl;
    }
    return 0;
}

posted on 2011-10-15 22:15 LLawliet 阅读(222) 评论(0)  编辑 收藏 引用 所属分类: 动态规划

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理